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Abstract: We investigate pairs of rings with a set of common ideals. 

        

In 1980’s, a series of papers appeared in Canadian Journal of Mathematics ([1],[2]) that 
investigated pairs of commutative rings with the same set of prime ideals.  We consider 
some generalizations of the study in the noncommutative setting. Throughout, all rings 
are assumed to be associative (but not necessarily commutative) with an identity element. 
The term “subring” will be used for a unital subring. Thus, not only a subring inherits its 
binary operations from its overring, but also they have the same identity element. 
 
Consider where V is a vector space over with ( , ),H Hom V V=

0
dim ( )V ω=ℵ ( is  0ω

the first limit ordinal). The center of H is isomorphic to and hence, it has subfields K 
and F such that and   Let { (omK F⊄ .F K⊄

0
, ) | dim ( )M f H V V f V ω }.= ∈ <ℵ  Then 

 and S M K= + R M F+=  are an example of a pair of rings with the same set of prime 
ideals.  Further more, S and R have infinitely many ideals and all of their proper ideals 
are prime ideals. A curiosity therefore arises for a pair of rings with the same set of 
proper ideals. By our first theorem, the only possible pairs of subrings of a commutative 
ring with the same set of proper ideals are fields.  
 
Theorem 1.  Two distinct subrings R and S of a ring are division ring if and only if they 
have the same set of proper right ideals. 
 
Proof.   Since ,R S≠  they cannot have two distinct maximal right ideals in common. Let  
M be the unique maximal ideal of R and S, and suppose that 0 a M .≠ ∈  Then, since R  
and S have the same set of proper right ideals, we have .aR aS=  Further, since1  is  m−
invertible for any  we must have ,m M∈ .aR aS aM= ≠  Thus  is a one- aS aM/
dimensional vector space over the division ring  and  is also a  S M/ /aS aM aR aM/ =
one-dimensional vector space over R M/ . This is a contradiction since .R M S M/ ≠ /   
Thus,  and hence R and S are division rings.   0M =
 
We now state two propositions on a pair of rings with an ideal in common.  
 
Proposition 1. Let R and S be subrings of a ring and suppose that they have a common 
ideal I.  If is a prime ideal ofP R , then  is either S or a prime ideal 
of .  

{P a S IaI P= ∈ | ⊆ }

                                                
S

 
1 The detailed version of this paper has been submitted elsewhere. 

  



  
Proposition 2 Let R and S be subrings of a ring having a common ideal I.  If  is a 
primitive ideal of 

P
,R  then  is either S or a primitive ideal of .  {P a S IaI P= ∈ | ⊆ } S

 
Our second theorem yields that a pair of rings has the same set of prime ideals if and only 
if they have the same set of maximal ideals. We denote the set of prime ideals of a ring R 
by Spec(R); the set of maximal ideals of a ring R by Max(R); and the set of primitive 
ideals of a ring R by Prim ( )R .  
 
Theorem 2.  Let R S≠  be subrings of an arbitrary ring.  Then the following statements 
are equivalent: 
 
(a) ( ) ( )Max S Max R⊇  
(b) ( ) ( )Max S Max R⊆  
(c)  ( ) ( )Spec S Spec R=
(d) Prim Prim ( )( )S = R  
 
Proof. If ( ) ( ),Max S Max R⊇  then R has a unique maximal ideal M. Let N be another 
maximal ideal of S. Then since S = M + N, there exist m M∈ and n N∈  such that 1 = m 
+ n. But then  and hence RnR = R.  Hence, 1n m R= − ∈ \ M 2M MRnRM N= ⊆ .  
Since N is a prime ideal of S, this is a contradiction. Therefore, ( ) ( ) { }Max S Max R M= = . 
This shows the equivalence of the statement (a) and (b). 
Suppose now that ( ) ( ) { }Max S Max R M= = and let P M≠  be a prime ideal of R. Then, 
by Proposition 1,  is a prime ideal of S . Since { }P a S MaM P= ∈ | ⊂ M  is the unique  
maximal ideal of , we have , and so  is an ideal of S P M⊆ P R . Since ,MPM P⊂ we  
obtain , and therefore  is a prime ideal of . Since a primitive ideal is prime, 
the equivalence of the statement (a), (b), and (d) can be shown similarly by using 
Proposition 2.  

P P⊂ P P= S

 
For a ring T, let S be the set of all subrings S of T with Spec( )T ( ) ( ).S Spec T=  We note 
that if T is a ring with unique maximal ideal M, then 

 where 1( ) { ( )     / }T p S simple subring of T M−=S |   S is a : /p T T M→ is the canonical  
epimorphism. 
 
A ring is called fully idempotent if every ideal of R is idempotent. A commutative fully 
idempotent ring is Von Neumann regular. However, the class of fully idempotent rings 
strictly contains the class of regular rings.  
 
Proposition 3. let R and S be fully idempotent subrings of a ring. Then R and S have the 
same set of proper ideals if and only if R and S have the same set of prime ideals. 
 
 
 

  



 
We are in a position to give a few examples. 
 
Example 1.  An example of a pair of rings having the same set of maximal (therefore 
prime) ideals but the set of proper ideals are not identical. 
 
Let ( )3R= ⊕  and ( )2S = ⊕

( , )ac ad bc= +

 be additive abelian groups with multiplication 

defined by ( . Then, )( , )a b c d R and S have a unique maximal ideal 

. Let 0M = ⊕ ( )0 2I = ⊕ .  Then I is an ideal of  but not of R.  S

 
Example 2.  An example of a pair of rings that have a nonzero ideal in common but the 
set of prime ideals are not identical. 
 
Let  be a field, and  and  be two polynomial rings over . Consider the ring 

 and its subring
K

S K
[ ]K x [ ]K y

{(
K

[ ] [ ]x K y= ⊕ ( ) ) , ( ) [ ]}R a xf x a S a K f x F x= + , ∈ | ∈ ∈ . Then R  
and have common idealS {( ( ), 0) | ( ) [ ]}I xf x f x K x= ∈ ,0)}P. Clearly {(0= is a prime 
ideal of ,R  but it is not a prime ideal of .  S
 
Example 3.  An example of a pair of rings that are not fully idempotent but have the  
same set of prime ideals. 
 
Let R  be the ring consisting of countable matrices over of the form R
 
      
    
    
    
    
    
where  and  is an arbitra
integer. 

  

a R∈ mA

Let S M  where F is a subfiF= +

Let  S S  and M= ⊕ R R M= ⊕
)ad bc+

b
by ( .  T, )( , ) ( ,a b c d ac=

1 2{( , ) | ,1 2 }M m m m m= M∈ and 
the ideal {(0, ) | }I m m M∈= is no
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Next, we investigate properties that pass through a pair of rings with common ideals. 
By Theorem 2, if two subrings R and S of a ring have the common maximal ideal, then 
they have the same set of prime ideals. Thus, in particular, if S is prime, then so is R. For 
a ring R, let ( )B R denote its prime radical, and denote its Jacobson radical. Using 
Propositions 1 and 2, one can prove Lemma 1 below and hence Proposition 4 holds. 

( )J R

Lemma 1.   Let R and S be subrings of a ring having a common ideal I. 

(a) If ( )B R ⊂ I , then ( ) ( )IB S I I B R∩ ⊂ .  
(b) If , then ( )J R I⊂ ( ) ( )IB S I I J R∩ ⊂ . 

Proposition 4.   Let R and S be subrings of a ring having a common ideal I.  

(a) If R  is a semiprime ring and if r I( ) ( ) 0S S I= = , then  is a semiprime ring.            
(b) If 

S
R  is a semiprimitive ring and if ( ) ( )S Sr I I 0= = , then  is a semiprimitive ring. S

 
Let R S⊆  be rings with a common ideal I, and let P be a prime ideal of R with .I P⊄

.P
 

Then “lying over” holds, i.e., there exists a prime ideal Q in S such that Q R  (See 
for example Rowen [4]). 

∩ =

 
Proposition 5. Let R S⊆  be rings with a common ideal I. If is a prime ideal of  
with

P S
I P⊄ , then  is a prime ideal of P R∩ .R  

 
 
Using Propositions 2, one can prove Lemma 2 below and hence Proposition 6 holds. 
 
Lemma 2 .  Let R S⊆  be rings with a common ideal I.  If ( ) ,B S I⊂  then 

( ) ( )B R I B∩ ⊂ S .  

Proposition 6.  Let R S⊆  be rings with a common ideal I . Then if is a semiprime ring 
and if 

S
I  is an essential ideal of , then is a semiprime ring.  S R

 
A ring all of whose (two sided) ideal is idempotent is called a fully idempotent ring.  A 
fully idempotent ring is in particular, a semiprime ring.  
 
Proposition 7. Let R and S be subrings of a ring having the common maximal ideal M. 
Then if R is fully idempotent, then so is S and in this case they have the same set of 
proper ideals. 
 
Every right ideal of a von Neumann regular is idempotent. A ring all of whose right ideal 
is idempotent is called a fully right idempotent ring and has received some attention in 
the literature.  
 

  



Proposition 8. Let R and S be subrings of a ring having the common maximal ideal M. 
Then if R is fully right idempotent, then so is S and in this case they have the same set of 
proper ideals. 
 
The next natural question is whether or not the “regularity” passes through two rings 
having the common maximal ideals.  
 
Example 4.  Let W denote the n-th Weyl algebra over a field of characteristic zero. It is 
well known that W is a simple Noetherian domain, and hence W is an Ore domain. Let D 
denote the filed of fraction of W.  Let R be the set of countable matrices over D of the 
form 
        
        
  
 
 
 
 
where  anda D∈
integer. Let S be t
maximal ideal M maximal ideal M 
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property” does not in general pass through a pair of rings with the same set of proper 
ideals.  
 
Proposition 10.  Let R and S be non-prime subrings of a ring having the common 
maximal ideal M. Then IP  is splitting for every ideal I of R if and only if IP  is splitting 
for every ideal I of S.  
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