Foundation of the Representation Theory of Artin Algebras,
Using the Gabriel-Roiter Measure.

Claus Michael Ringel

1. The Setting.

Let A be an artin algebra (this means that A is an associative ring with 1, its
center is a commutative artinian ring and A is finitely generated as a module over its
center), we always may (and will) assume that A is connected (this means that the
center is a local ring). Let Mod A denote the category of all (left) A-modules and
mod A the full subcategory of all finitely generated modules. Usually, we will deal
with finitely generated modules and call them just modules, given such a module
M, we denote by |M| its length (this is the length of any composition series, recall
that this is an invariant of the module according to the Jordan-Holder theorem).

Our interest concerns indecomposable modules: given an arbitrary, not neces-
sarily finitely generated module M and submodules M;, Ms of M, then we write
M = M; & M, provided M; N My = 0 and My, + Ms = M and call this a direct
decomposition of M; we say that M is indecomposable, provided M is nonzero and
the only direct decompositions M = M; & M5 are those with M; = 0 or My = 0.
Of course, any finitely generated A-module can be written as a finite direct sum of
indecomposable modules, and such a decomposition is unique up to isomorphism
(according to the Theorem of Krull-Remak-Schmidt); the reason for this uniqueness
is the fact that any indecomposable module of finite length has a local endomor-
phism ring.

The main problem of representation theory is to find invariants for modules and
to describe the isomorphism classes of all the indecomposable modules for which
such an invariant takes a fixed value. A typical such invariant is the length of a
module: the simple modules are those of length 1 (and there is just a finite number
of such modules), the information concerning the indecomposable modules of length
2 is stored in the quiver (in case we deal with a finite dimensional algebra over some
algebraically closed field) or the “species” of A. Given any invariant v, as a first
question one may look for values of finite type: these are those values v such that
there are only finitely many isomorphisms classes of indecomposable modules M
with (M) = v. The invariant to be discussed here is the Gabriel-Roiter measure.

The Gabriel-Roiter measure was introduced (under the name “Roiter mea-
sure”) by Gabriel in [G] in order to clarify the intricate induction scheme used by
Roiter [Ro] in his proof of the first Brauer-Thrall conjecture. Gabriel’s analysis
of Roiter’s proof is a quite non-trivial achievement and it merits to add his name
to the concept. Indeed, the definition of what we call the Gabriel-Roiter measure
seems to be strange on first sight, but as we are going to show it embodies a com-
plete theory. Recall that the first Brauer-Thrall conjecture [Ri3] asserted that an
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artin algebra of bounded representation type is of finite representation type (here,
bounded representation type means that there is a bound on the length of the in-
decomposable representations, and finite representation type means that there are
only finitely many isomorphism classes of indecomposables). Roiter’s proof of this
conjecture marks the beginning of the new representation theory of finite dimen-
sional algebras. Despite the fame of the result, the actual paper of Roiter (and also
Gabriel’s interpretation) was apparently forgotten in the meantime. There was a
later proof of the first Brauer-Thrall conjecture by Auslander and it is this proof,
or its modification due to Yamagata, which usually is presented. Auslander’s proof
has the advantage that it works for artinian rings, not only for artin algebras, but
the usual references do not even exploit this, but use it as a striking application
of the Auslander-Reiten theory for artin algebras (which it is). It is worthwhile to
recall the old proof of Roiter and the methods involved. These methods can be used
and should be used as a kind of foundation for the representation theory of artin
algebras: the Gabriel-Roiter measure seems to be an important first invariant to
be studied when dealing with the representations of an artin algebra. One of the
reasons that this has not been done may stem from the fact that both Roiter as
well as Gabriel work from the beginning only with algebras of bounded representa-
tion type (thus with algebras which are shown to be of finite representation type).
However, and this will be our main objective, the Gabriel-Roiter measure can be
introduced and used for arbitrary artin algebras, and it unfolds its real strength
when dealing with algebras of infinite representation type! (Actually, there is a
footnote in Gabriel’s paper asserting that one may waive the restriction of dealing
with bounded representation type, but apparently this was overlooked.)

The main topic to be discussed here will be cogeneration of modules: Recall
that given two modules X, Y, one says that X is cogenerated by Y provided the
intersection of the kernels of all maps X — Y is zero. In case X is of finite length,
it is immediate to see that X is cogenerated by Y if and only if X can be embedded
into a finite direct sum of copies of Y. Cogeneration yields a kind of partial ordering
of the isomorphism classes of A-modules. Namely, there is the following observation:

Assume that X,Y are non-zero modules of finite length such that X is cogen-
erated by Y and Y 1is cogenerated by X, then there is an indecomposable module Z
which is a direct summand of X as well as of Y.

Proof: By assumption, there exist embeddings f: X — YY" and g: Y — X™ for
some natural numbers n,m. Obviously, this yields an inclusion map h: X — X"™
which factors through Y ™. Since for any module X the radical of the endomorphism
ring of X annihilates some non-zero element of X, we conclude that there is an
indecomposable direct summand X’ with inclusion m: X’ — X’ and a projection
p: X™® — X' such that the composition phm: X’ — X’ is invertible. Since this
invertible map phm factors through Y, the module X’ occurs as a direct summand
of Y™ and therefore of Y.

The Gabriel-Roiter measure p provides a tool for a better understanding of
the cogeneration of modules. It allows to index the isomorphism classes of the A-
modules by a totally ordered set (say a set of real numbers with their usual ordering)
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so that cogenerations are possible only in the given order: Assume that X,Y are
non-zero modules of finite length and without any common indecomposable direct
summand. If and X is cogenerated by Y, then pu(X) < pu(Y).

For the proofs of the Main Proposition and Theorems 1, 2 and 3, see [R5].

2. The Basic Definitions.

Let N; = {1,2,...} be the set of natural numbers. Note that we use the
symbol C to denote proper inclusions. Let P(N;y) be the set of all subsets I C Nj.
We consider this set as a totally ordered set as follows: If I, J are different subsets
of Ny, write I < J provided the smallest element in (I\ J)U (J\ I) belongs to J. It
is easy to see that P(N;) with this ordering is complete. Also note that I C J C Ny
implies that I < J.

The Gabriel-Roiter measure of a module of finite length will be a finite set
of natural numbers. We want to provide a more intuitive understanding of the
Gabriel-Roiter measure, in particular of the total ordering as described above. In
order to do so, we are going to embed the set Pf(N;) of all finite subsets of N;
into the ordered set Q of all rational numbers (in section 5 we will extend this
embedding to an embedding of all the possible Gabriel-Roiter measures for arbitrary,
not necessarily finitely generated modules over an artin algebra into the ordered set
of real numbers).

Lemma 1. The map r: Py(Ny) = Q given by r(I) =Y, 57 for I € Py(Ny)
is injective, its image is contained in the interval [0,1] and it preserves and reflects
the ordering.

Proof: The essential consideration is the following: Let I, .J belong to P¢(N;)
with I < J. Then r(I) =r(INJ)+r(I\J) and r(J) =r(INJ)+r(J\I). Let a
be the smallest element in J\ I. Then r(J\I) > 5= = > .o, 5 > r(I\ J), since
I'\ J is a proper subset of {i € Ny | i > a}.

For a (not necessarily finitely generated) A-module M, let (M) be the supre-
mum of the sets {|Mi|,...,|M;|} in the complete totally ordered set (P(Ny), <),
where My C My C --- C M; is a chain of indecomposable submodules of M. We
call (M) the Gabriel-Roiter measure of M. Note that the Gabriel-Roiter measure
of a module M only depends on its submodule lattice: if M and N are modules
with isomorphic submodule lattices, then u(M) = p(N).

Examples. Let M be an indecomposable module of length £.
u(M) = {1} iff M is simple (thus ¢t = 1).

w(M) = {1,2} iff M is indecomposable and ¢ = 2.

uw(M) ={1,2,...,t} iff M is uniform (i.e. its socle is simple).
w(M) = {1,t} iff M is local and has Loewy length at most 2.

We will use the Gabriel-Roiter measure y (or the composition ) in order to
visualize the category mod A. As abbreviation, let us write A = mod A. For any
finite subset I C Nj, we denote by A(I) the class of indecomposable A-modules M
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with pu(M) = I, and we say that I is a Gabriel-Roiter measure for A provided A(I)
is non-empty. Similarly, let A(< I) be the class of indecomposable A-modules M
with u(M) < I.

A(<I)
. :

’I'(:I )

(e}

L

If M is an indecomposable A-module of finite length, we call any filtration
MiCcMyC---CMy CM=M

with u(M) = {|My|, |Ms|, ..., |Mi_1], |M¢|} a Gabriel-Roiter filtration of M; if M is
of length at least 2 (thus ¢ > 2) the module M;_; will be said to be a Gabriel-Roiter
submodule of M. Thus a Gabriel-Roiter filtration exhibits an iterated sequence
of Gabriel-Roiter submodules (in section 5, we will consider also Gabriel-Roiter
filtrations of infinitely generated modules, again using iterated sequences of Gabriel-
Roiter submodules). Given a proper inclusion X C Y of indecomposable finite
length modules, then X is a Gabriel-Roiter submodule of Y iff u(Y) = u(X) U
{|Y]}. In particular, if X is a Gabriel-Roiter submodule of Y, then for every
monomorphism f: X — Y, also f(X) is a Gabriel-Roiter submodule of Y.
Gabriel-Roiter submodules of a given indecomposable module are usually not
unique, not even unique up to isomorphism (all have however the same length).
For example, for the Kronecker quiver, all the indecomposables of length 2 are
Gabriel-Roiter submodules of the indecomposable injective module of length 3.

3. The Cogeneration Property.

Main Property (Gabriel). Let X,Yq,...,Y; be indecomposable A-modules
of finite length and assume that there is a monomorphism f: X — @321 Y;.
(a) Then u(X) < max ju(Y;).
(b) If max pu(Y;) starts with u(X), then there is some j such that m;f is injective,
where wj: €, Y; — Y; is the canonical projection.

Note that (b) immediately implies:
(b") If u(X) = max u(Y;), then f splits.

The assertions (a) and (b’) have been formulated and proven by Gabriel in [G]
using the additional assumption that A is of bounded representation type.
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We conclude: add A(<1) is closed under submodules and any monomorphism
f: X =Y with X in A(I) and Y in add A(< I) splits (if X is a class of inde-
composable A-modules, we denote by add X the class of all finite direct sums of
modules in X'). The latter assertion may be reformulated as follows: the modules
in add A(I) are “relative injective” inside add A(<T).

Corollary 1. If My,..., M, are (not necessarily finitely generated) indecom-
posable A-modules, then p(E M;) = max u(M;).

Proof: Since M; is a submodule of M = @ M;, we have max u(M;) < u(Ep M;).
Conversely, u(M) is the supremum of u(M’), where M’ is a finitely generated
indecomposable submodule of M, thus we have to show p(M') < max p(M;). Now
M' C @ M, where M; is a finitely generated submodule of M;. We can write
M! =@ ; M;; with indecomposable modules M;;. Note that M;; is a submodule
of M;, thus pu(M;;) < w(M;). According to part (a) of Main Property, we get
p(M') < max;; p(M;;) < max; M;, this concludes the proof.

Corollary 2. Let M be an indecomposable module and N a Gabriel-Roiter
submodule of M. Then, for any proper submodule N' of M containing N, the
embedding N C N' splits.

Proof: First consider the case where N’ is indecomposable. Assume f’ is
not an isomorphism. Then p(N) U {|N'|,|M|} < pu(M). However, by assumption
p(M) = p(N)U{|M|} and u(N)U{|M|} < p(N)U{|N'|, | M|}, a contradiction. Now,
consider the general case: Write N' = €, N; with indecomposable modules N;.
The Main Property (a) asserts that p(/N) < max pu(N;) and trivially max p(V;) <
w(M). Since p(M) starts with p(N), the same is true for max p(2V;), thus by (b')
there is some j such that the map =;f’ is injective, where 7;: N’ — Nj; is the
canonical projection. Besides the monomorphisms 7; f': N — Nj, there also exists
a monomorphism N; — N’ — M. Since the latter is a proper monomorphism,
and N; is indecomposable, we are in the first case, thus we know that =; f’ is an
isomorphism, thus f’ is a split monomorphism.

The property of the inclusion map f: N — M in Corollary 2 may be called
mono-irreducibility, in parallelity to the Auslander-Reiten notion of irreducibility:
f is a non-invertible monomorphism and any factorization f = f”f’ of f using
monomorphisms f’ and f” implies that f’ is a split monomorphism of f” is a split
epimorphism (thus isomorphism). Irreducible monomorphism are mono-irreducible;
however there are obvious mono-irreducible maps which are not irreducible: for
example consider the path algebra of the quiver

a
>
b

The inclusion map of the simple module S(a) into its injective envelope is mono-
irreducible, however it factors through the projective cover of S(c), thus it is not ir-
reducible. Also, there is the following phenomenon: Given indecomposable modules
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X,Y, there may be irreducible monomorphisms f: X — Y and also a monomor-
phism g: X — Y which is not even mono-irreducible. For example, take the heredi-
tary algebra Asq, let S be simple projective and P the indecomposable projective of
length 4. Then Hom(S, P) is 2-dimensional and the non-zero maps are monomor-
phisms. Thus the monomorphisms (up tp scalar multiplication) S — P form a
projective line; one of these equivalence classes is not mono-irreducible (it factors
through an indecomposable length 2 submodule), the remaining ones are irreducible,
thus mono-irreducible.

Corollary 3. Let N be a Gabriel-Roiter submodule of the indecomposable
module M. Then M/N is indecomposable.

Proof of Corollary 3: Assume M/N = Q1 & @2 with non-zero modules Q1, Q5.
For i = 1,2, write Q; = N;/N, where N C N; C M. According to Corollary 2, we
find submodules N/ of N; such that N; = N @ N/. Then M = N @ N; @ Ny, in
contrast to the fact that M is indecomposable.

This corollary asserts, in particular, that any indecomposable module M of
length at least 2 occurs as the middle term of an exact sequence

0—-N—->M-—M/N -0,

where all three terms N, M, M/N are indecomposable. (This exact sequence has the
following additional property: its equivalence class in Extl(M /N, N) is annihilated
by the radical of End(M/N), where we view Ext'(M/N, N) as usual as a right
End(M/N)-module.)

Also we see: If M and N are indecomposable modules with |N| < |M| and
pw(M) = pu(N)U{|M|}, then the cokernel of any monomorphism f: N — M is
indecomposable. One should be aware that there are plenty of pairs of modules
N, M such that there do exist monomorphisms fi, fo: N — M such that the kernel
of f; is indecomposable whereas the kernel of f; is not (for example, let A be the
path algebra of the Kronecker quiver and let N, M be preprojective A-modules of
length 1 and 5, respectively).

One may wonder about the possible modules which occur as factor modules
M/N, where M is indecomposable and N is a Gabriel-Roiter submodule. For the
path algebra of a quiver of type A,, all these factors are serial and of length at
most "TH, a factor of length "TH occurs for the sincere representation of the quiver
of type A, (n odd) with a unique source

e

and with arms of equal length.
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4. Main Results.

The indecomposable A-modules of length at most n belong to the classes A(I)
with I C {1,2,...,n}, and there are just finitely many such classes. Thus as soon
as we exhibit (as we will do now) an infinite list of Gabriel-Roiter measures for A,
this implies that A cannot be of bounded representation type. Thus, the following
theorem strengthens the assertion of the first Brauer-Thrall conjecture. In contrast
to the assertion of the first Brauer-Thrall conjecture, the statement is meaningfull
even in case A is a finite ring (i.e. a ring with finitely many elements). Recall that a
Gabriel-Roiter measure [ is said to be of finite type provided there are only finitely
many isomorphism classes in A(]).

Theorem 1. Let A be of infinite representation type. Then there are Gabriel-
Roiter measures I, It for A with

L<Iy<Iz< -+ <I3B<I?<I'

such that any other Gabriel-Roiter measure I for A satisfies I, < I < It for all
t € Ny, and all these Gabriel-Roiter measures I and I are of finite type.

We call the modules in |, A(I¢) (or the additive category with these indecom-
posable modules) the take-off part of the category A, and |J, A(I*) (or the additive
category with these indecomposable modules) the landing part of A. The remain-
ing indecomposables (those which do not belong to the take-off part or the landing
part) are said to form the central part. It is the central part which should be of
particular interest in future:

I I, Iy Iy -

I? It

Note that for any n, there are only finitely many isomorphism classes of inde-
composable modules of length n which belong to the take-off part (since they belong
to only finitely many classes A(I;) and any class A(l;) is of finite type). Simi-
larly, there are only finitely many isomorphism classes of indecomposable modules
of length n which belong to the landing part.

It is obvious that the modules in A(I7) are just the simple modules, those
in A(I3) are the local modules of Loewy length 2 of largest possible length. On
the other hand, the modules in A(I') are the indecomposable injective modules of
largest possible length. For general ¢, it seems to be difficult to characterize the
modules in A(I;) or A(I*) in a direct way.

Recall that Auslander-Smalg have introduced in [AS] the notion of preprojec-
tive and preinjective modules (actually with reference to the work of Roiter and
Gabriel).

Theorem 2. The modules in the landing part are preinjective.

Since modules which have infinitely many different Gabriel-Roiter measures
cannot have bounded length, we obtain in this way a new proof for the assertion
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that the indecomposable preinjective modules are of unbounded length ([AS],5.11).
But note that usually there will exist preinjective indecomposables which do not
belong to the landing part. For example, any simple module belongs to A(17), thus
a simple injective module is preinjective and in the take-off part, thus not in the
landing part. Also, there may exist preinjective modules @ such that A(u(Q)) is
infinite, as the example of the radical-square-zero algebra with quiver

<~
O=<— O e}

shows: take for () the indecomposable injective module of length 2. But there may
be even infinitely many isomorphism classes of preinjective indecomposables which
do not belong to the landing part:

Example. Consider the tame hereditary algebra of tye Ao

Q<—C

For a tame hereditary algebra, the Auslander-Smalg preinjectives are just those
modules which belong to the preinjective component.

We denote by S(z) the simple module corresponding to the vertex z, thus S(a)
is projective and S(c) is injective. The top composition factors of the preinjective
indecomposable modules are injective, all but at most one socle composition factors
are projective, the exceptional one will be of the form S(b). Now, in case the socle
is projective, then the GR-measures are as follows:

-+ > 1235689, 10 > 123567 > 1234,
the general form is
123|56|89] - -+ (33 — 1, 3i| - - - [3n — 1, 3n|3n + 1,

with n > 0. For n = 4, it looks as follows

N

and for n > 1, the GRAfiltration starts with My C My C Ms, where M3 is the
indecomposable length 3 module seen left: it is uniform, but not serial.
On the other hand, those preinjectives with S(b) in the socle have GR-measure
123(6(9)| - - -[3i] - - - |3n|3n + 2,
with n > 0. For small n > 1, we obtain the values

--- > 12369, 11 > 12368 > 1235.
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Here is the picture for n = 4

NN

now, for n > 1, the GR-filtration starts with M; C My C Ms, where M3 is the
serial length 3 module seen right.

It follows that all the preinjective modules with S(b) in the socle belong to the
central part.

In contrast to Theorem 3, the modules in the take-off part are usually not
preprojective. Here is an example: Let A = k[X,Y]/(XY, X3,Y3) and A the ideal
generated by X2 and Y? (these elements actually form a basis of A). The take-
off part for A is the same as the take-off part for A/A and these modules are the
preprojective A/A-modules, but none of them is preprojective as a A-module.

Note that there is no dualization principle concerning the take-off and the
landing part (whereas the notions of preprojectivity and the preinjectivity are dual
ones)! If we want to invoke dual considerations, then we have to work with a
corresponding Gabriel-Roiter comeasure which is based on looking at indecompos-
able factor modules in contrast to the Gabriel-Roiter measure which is based on
indecomposable submodules. This will be done in section 7.

It is usually difficult to specify the position of the possible Gabriel-Roiter mea-
sures. But here is such an assertions, dealing with uniform modules:

Proposition. Let I' = (1,2,...,t) and 1 < s < t. Assume the following: for
any simple A-module with injective envelope Q(S) of length greater than s, there
are only finitely many indecomposable A-modules with a submodule of the form S.
Then (1,2,...,s) is a landing measure.

Proof: We show that any indecomposable module M with u(M) > (1,2,...,s)
has a composition factor of the form S, such that |Q(s)| > s. Thus assume that
p(M) > (1,2,...,s) and take a Gabriel-Roiter-filtration of M. The first s sub-
modules in the filtration are uniform of length ¢ with 1 < ¢ < s. In particular,
M contains a uniform module U of length s. Let S be its socle, thus U embeds
into Q(S), and this is a proper embedding, since otherwise U = Q(S) would be a
direct summand of M. However M is indecomposable and of length greater than
s. This shows that |Q(S)| > s and S C U C M is a submodule of M. By as-
sumption, there are only finitely many such isomorphism classes. This shows that
there are only finitely many isomorphism classes of indecomposable modules M
with (M) > (1,2,...,s), thus (1,2,...,s) belongs to the landing part.

5. Infinitely generated modules.

Up to now, we have concentrated on A-modules of finite length, however the
Gabriel-Roiter measure was introduced above for all A-modules M, not just those
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of finite length. Note that by definition u(M) is the supremum of u(M'), where M’
are the finitely generated submodules of M (or just the indecomposable ones).

We extend the notion of a Gabriel-Roiter filtration as follows: In case there
exists a (countable) chain of submodules

MyCMyC---C|J Mi=M suchthat p(M)={|M,;]|i},

then we call this chain a Gabriel-Roiter filtration of M. Of course, a finitely gener-
ated A-module M has a Gabriel-Roiter filtration if and only if M is indecomposable.
As a consequence of Gabriel’s Main Property we show now that also any infinitely
generated module with a Gabriel-Roiter filtration is indecomposable:

Corollary 4. Any module M with a Gabriel-Roiter filtration is indecompos-
able.

Proof: We can assume that there is given an infinite chain
MiCcMyC---C| ) Mi=M
(2

such that M; is a Gabriel-Roiter submodule of M;,, for all ¢ > 1. Assume that
there is given a direct decomposition M = U @& V with U,V both nonzero. Note
that if UNM; =0 for all i, then U=UNM =Un(JM;) = J({UNM;) =0. This
shows that there is some index s such that UN M, # 0 and also VN M, # 0. Choose
finitely generated submodules U’ C U and V' C V such that M, C M' =U' @ V’,
and decompose U' = @QU;, V' = @V, with indecomposable modules U; and Vj.
Finally, choose t such that M’ C M.
Now we consider the Gabriel-Roiter measures: We get

(M) < max{u(U;), p(V;)} < (M)

(the first inequality is Main Property (a), the second is trivial). Since My and M,
belong to a Gabriel-Roiter filtration, it follows that u(M;) starts with p(Mj), thus
also max{u(U;), u(V;)} starts with p(Ms) and we can apply Main Property (b).
Without loss of generality, we can assume that the composition of the inclusion
M; - @D, Ui ® @D, V; = M’ and the projection 7Y M’ — U, is injective (where
i = 1 is one of the indices). Recall that there is a non-zero element v € V N M.
Since My C M' = U'" @ V', we can write v = v’ +v' with v/ € U’ and v/ € V.
However v/ = v —v' € U'NV = 0 shows that v = v’ belongs to V’. Since v belongs
to V! = @Vj, it is mapped under 7¥ to zero. This contradicts the fact that 7Y is
injective.

Theorem 3. Let A be of infinite representation type. There do exist modules
which have an infinite Gabriel-Roiter filtration

MicMyc--C|J) M=M
1

such that all the modules M; belong to the take-off part.
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Note that according to Corollary 4, such a module M is indecomposable. Also,
any finitely generated submodule M’ of M is contained in some M, thus belongs to
the take-off part. In particular, for any natural number n, M has only finitely many
isomorphism classes of submodules of length n. In general, Theorem 3 will provide
a large number of indecomposable A-modules M, however all these modules have
the same Gabriel-Roiter measure! For example, if K is the Kronecker quiver and &
is a countable and algebraically closed field, then all the “torsionfree kK-modules
of rank 1”7 (see [Ri2]) occur in this way, and u(M) = {1,2,4,6,8,...}. On the other
hand, for the tame algebra of type 221, there is only one such module M, namey
the string module corresponding to

PV AN AN

its Gabriel-Roiter measure is {1,2,4,5,7,8,...}.

The existence of infinitely generated indecomposables for any artin algebra of
infinite representation type was first shown by Auslander [A]. For a discussion of
the question whether a union of a chain of indecomposable modules of finite length
is indecomposable or not, we refer to [Ril].

Let us note that there are indecomposable modules without a Gabriel-Roiter
filtration. Of course, any module with a Gabriel-Roiter filtration is countably gener-
ated, here is an example of a countable generated indecomposable module without a
Gabriel-Roiter filtration: We consider again the tame hereditary algebra of type As;
and take the Priifer module for the simple module S(b) which is neither projective

nor injective:

its Gabriel-Roiter measure is {1,2,4,5,7,8,...}, but there is no corresponding sequence
of submodules which exhaust all of M.

We have introduced above an embedding of P¢(Np) into Q. In order to deal
also with modules with are not finitely generated, we consider the set P;(N;) of all
subsets I of Ny such that for any n € Ny, there is n’ > n with n’ ¢ I.

Lemma 2. The Gabriel-Roiter measure p(M) of any module M belongs to
Pi(Ny).

Proof. There is m € N; such that any indecomposable injective A-module has
length at most m. Let pu(M) = {a1 < az < --- < a; < ---} and assume that for
some n we have ap41¢ =a, +tforallt € Ny. Let s=m-a,

There is a chain of indecomposable submodules My C Ma C -+ C My 45 with
|IM;| =a; for 1 <i<mn+s. Since |My1t| = @it = apat—1+1=|Mpie_1|+1, we
see that My ,;—1 is a maximal submodule of M,, ;. Since M,,; is indecomposable,
the socle of M,,;; has to be contained in M, ;1. Inductively, we see that the
socle of M, is contained in M, for any ¢t > 1, in particular, the socle of M,
is contained in M,,, thus M, can be embedded into the injective envelope of M,,.
Since any indecomposable injective module is of length at most m, the injective

11
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envelope of M,, has length at most m - ay,, thus |[M,,;s| < m-a,. But |[M, | =
|Mp|+ s = (m+ 1)a, > m- ay, a contradiction.

The embedding of Pf(Np) into Q (thus into R) extends to an embedding of
P1(N;) into the real interval [0, 1]:

Lemma 1'. The map r: Pi(N1) = R given by r(I) = >, 5 for I € Pi(Ny)
is injective, its image is contained in the interval [0,1] and it preserves and reflects

the ordering.

Remark: The map r can be defined not just on P;(N;), but on all of P(Ny),
however it will no longer be injective (indeed, for any element I in P(N;) \ P;(Ny),
there is a unique finite set I’ with r(I) = r(I’)). Of course, one easily may change
the definition of 7 in order to be able to embed all of P(N;) into R: just use say
3 instead of 2 in the denominator. However, our interest lies in the Gabriel-Roiter
measures which occur for finite dimensional algebras and Lemma 2 assures us that
the definition of r as proposed is sufficient for these considerations.

5. Examples.

Example 1. The Kronecker quiver 1111- We have referred to this quiver
already several times, it has vertices a,b and two arrows b — a; its representa-
tions are called Kronecker modules. There are two simple Kronecker modules, the
projective simple module S(a) and the injective simple module S(b). If M is a
Kronecker module, its dimension vector is of the from dim M = (d,,dp), where
d, is the Jordan-Holder multiplicity of S(a), and dp that of S(b). The dimension
vectors of the indecomposable modules are of the form (z,y) with |z —y| < 1. Here
is the complete list of the indecomposable representations in case k is algebraically
closed:

e The preprojectives P, for n € Ny, with dim P, = (n + 1,n) and u(P,) =
{1,3,5,...,2n+ 1}.

e The preinjectives @,, for n € Ny, with dim@Q,, = (n,n + 1) and u(Q,) =
{1,2,4,6,...,2n,2n + 1}.

e The regular modules Ry[n] for A € P(k) and n € Ny, with dim Ry[n] = (n,n)
and u(Rx[n]) = {1,2,4,6,...,2n}.
The totally ordered set of all the Gabriel-Roiter measures for the Kronecker

quiver looks as follows:

s P, Py Py---  Ry\[1] Ry[2] -+ @ -+ Q3 Q2 @1

Here S = A({1}) = {S(a),S(b)}. Note that there are precisely two accumula-
tion points, indicated by the dotted vertical lines, they correspond to the only
two Gabriel-Roiter measures for infinitely generated modules: to the left, there is
{1,3,5,7,...}, this is the Gabriel-Roiter measure for all indecomposable torsionfree
modules; to the right, there is {1,2,4,6,8,...}, this is the Gabriel-Roiter measure

12
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for the so-called Priifer modules (an account of the structure theory for infinitely
generated Kronecker modules can be found for example in [Ri2]).

A more precise picture of the Gabriel-Roiter measures for the Kronecker algebra
is the following; here the upper sequences are the measures I, the lower numbers
the corresponding values r(I):

12467
1387 124" 7%® 1945
1 13 12 ‘ 123
0.5 0.625 0.75 0.875
0.65625 0.8125 _ 0.85
0.664 0.828
0.842

In case k is not algebraically closed, we have to take into account field exten-
sions of k, or better indecomposable k[T]-module of finite length N, where k[T is
the polynomial ring over k in one variable T. Any indecomposable k[T]-module
N of length n and with a simple submodule of dimension d gives rise to a regu-
lar Kronecker module with dimension vector (nd,nd) and Gabriel-Roiter measure
{1,3,5,...,2d—1,2d;4d,6d, . ..,2nd}. Thus we see that the Gabriel-Roiter measure
for the path algebra kA of a quiver A may depend on k (and usually will).

Example 2. The tame hereditary algebra of type Ay;. Also this algebra
has been referred to before, we want to stress here some features which one should
be aware of. In order to list all the indecomposable A-modules, we use that A is
a string algebra. Thus the indecomposable modules are the string and the band
modules. Again, we restrict to the case of k£ being algebraically closed.

There is a unique one-parameter family of band modules; they are of the form
Ry[n], where A € k\ {0} and n € N;, with Gabriel-Roiter measure p(Ry)) =
{1,2,3;6,9,---,3n}.

In order to write down the string modules, we use words in o, 3,7~!; the
relevant distinction is given by fixing the vertices x,y such that the word starts in
z and ends in y (always n € Np):

ry  property dimension GR-measure

aa  preprojective 3n+1 1,2,4,5,7,8,....,3n—2,3n—1,3n+1

ab  preprojective 3n+2 1,2,4,5,7,8,...,3n—2,3n—1,3n+1,3n+2
ac  homogeneous n+3 1,2,3;6,9,...,3n

ba  regular, non-homog. 3n+3 1,2,4,5,7,8,....,3n—2,3n—1,3n+1,3n+3
bb  regular, non-homog. 3n+1 1,2,4,5,7,8,...,3n—2,3n—1,3n+1

be preinjective 3n+2 1,2,3;6,9,...,3n;3n+2

ca  regular, non-homog. 3n+2 1,2,3;5,6,8,9,...,3n—1,3n,3n+2

cb regular, non-homog. 3n+3 1,2,3;5,6,8,9,...,3n+2,3n+3

cc preinjective 3n+1 1,2,3;5,6,8,9,...,3n—1,3n;3n+1
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The set of Gabriel-Roiter measures for A has the following structure:

I II I”

s aq n>1 H - be ca - cc
ab cb n>1
bh n21
ba

Here, H denotes the class of all homogeneous modules (the bands as well as the
strings of type ac), whereas S are the simple modules.

Some observations:

(1) There are many “maximal” GR-measures I (maximality should mean that
no other GR-measure starts with I), in particular see ba, but also bc and cc.

(2) The take-off part contains all the preprojective modules, but in addition also
half of the non-homogeneous tube (namely all the regular modules which have
the simple module S(b) as submodule.

(3) The landing part contains only half of the preinjective modules (also the
modules be are preinjective)

(4) The GR-measure apparently does not distinguish modules which have quite
different behaviour, see aa and bb (however, aa and bb will be distinguished in
case we invoke the dual concepts, see the next appendix)

(5) There are three accumulation points I, 1', I":

I=1{1,2,4,5"7,8,10,11,...}
I'=1{1,2,3,6,9,12,15,...}
I"={1,2,3,5,6,8,9,11,12,...}

The first one I is the Gabriel-Roiter measure of the torsionfree modules; I’
is the Gabriel-Roiter measure for all the Priifer modules arising from homo-
geneous tubes; I" is that of the Priifer module containing the 2-dimensional
indecomposable regular module as a submodule.

(6) There is one additional Priifer module, it contains the simple module S(b) as
a submodule: this module does not have a Gabriel-Roiter filtration!

6. Dualization

Dualization. Almost all the considerations presented above can be dualized
and then they yield corresponding dual results. This means that instead of looking
at filtrations

O=MyCM,C---CM=M

with M; indecomposable for 1 < ¢ < t, we now look at such filtrations with M/M;_4
indecomposable for 1 < i < ¢t. We prefer to use now the opposite order on P(Ny),
we denote it by <* (and <*), thus I <* J iff J < I. For a (not necessarily finitely
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generated) A-module M, let p*(M) be the infimum of the sets {|Mi],. .., |M:|}
in (P(Ny),<*), where My C My C --- C M, is a chain of submodules of M with
M /M;_4 indecomposable for 1 < i < ¢, we call p*(M) the Gabriel-Roiter comeasure
of M. We say that J is a Gabriel-Roiter comeasure for A provided there exists an
indecomposable module M with p*(M) = J.

In order to visualize (P;(N;y), <*), we use the embedding r*: (P;(N;),<*) - R
given by r*(I) = —r(I). Note that for any non-zero module M, we have —1 <
r*(u(M)) < 0. (Actually, it may be advisable to rescale r and r* so that r({1}) =
r*({1}) =0 and r(N;) =1,7*(N;) = —1.)

The dual version of Main Property reads as follows:

Main Property*. Let Y1,...,Y;, Z be indecomposable A-modules of finite
length and assume that there is an epimorphism g: @fﬂ Y, —> Z.
(a) Then max p*(Y;) <* p*(Z2).
(b) Ifmax p*(Y;) starts with p*(Z), then there is some j such that gu; is surjective,
where uj: Y; = @, Y; is the canonical inclusion.
(b") If p*(Z) = max pu*(Y;), then g splits.

As a consequence, we see that the class of modules which are direct sums of
modules M with I <* p*(M) for some set I C Nj is closed under factor modules. In
this way, one obtains a second interesting filtration of the category of all A-modules
by subcategories, now these subcategories are closed under factor modules.

Let us formulate the dual versions of Theorem 1 and Theorem 2:

Theorem 1*. Let A be of infinite representation type. Then there are Gabriel-
Roiter comeasures Jy, Jt for A with

Ji<Jh<J3< - <JIP<JtP<J?

such that any other Gabriel-Roiter comeasure J for A satisfies J, < J < Jt for all
t € Ny, and all these Gabriel-Roiter comeasures J; and Jt are of finite type.

We do not have a suggestion how to call the modules in | J, A(J;) or in |J, A(J?).
The indecomposable modules which belong neither to |J, A(J;) nor to | J, A(J*) may
be said to be form the *-central part.

Note that for any n, there are only finitely many isomorphism classes of inde-
composable modules of length n which belong to |J, A(J;) or to J, A(J*).

The modules in A(J?!) are just the simple modules, those in A(J?) are the
uniform modules of Loewy length 2 of largest possible length. On the other hand,
the modules in A(J;) are the indecomposable projective modules of largest possible
length.

Theorem 2*. The modules in |J, A(J;) are preprojective.

There does not seem to exist a dual version of Theorem 3, since Theorem 3
deals with infinitely generated modules. It is the assertion of Corollary 4 which
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breaks down. For example, consider again the Kronecker quiver and let (),, be the
preinjective module of length 2n 4+ 1. Then @Q,,_1 is a Gabriel-Roiter factor module
of Q,,, for n > 1, and the sequences of epimorphisms

= Q2 — Q1 — Qo

may be called Gabriel-Roiter cofiltrations. If we form the inverse limits, we obtain
infinite direct sums of Prifer modules; in particular, such an inverse limit module
is not indecomposable.

7. The Rhombic Picture.

We are going to use now both the measure and the comeasure at the same
time. Given a pair (J, I) of finite subsets I, J of N;, we may consider the module
class

A(J,I)={M | M indecomposable, p*(M)=J, u(M) =1},

thus we attach to a module M the pair (u*(M), u(M)). The possible pairs (J,I)
can be considered (via r* and r) as elements in the rational plane Q? :

The horizontally dashed region is the central part (in between the take-off part
and the landing part); the vertically dashed region is the *-central part. The main
information one should keep in mind: The only possible pairs (J,I) of finite subsets
of Ny such that A(J,I) contains infinitely many isomorphism classes, are those
which belong both to the central and the x-central part.

Example 1: The Kronecker quiver, with k algebraically closed. The pic-
ture which we obtain is nearly the same as the commonly accepted visualization, the
only exception being the position of the simple modules. One should be aware that
the commonly accepted visualization with the preprojectives and the preinjectives
being drawn horizontally and the tubes being drawn vertically in the middle was
based mainly on the feeling that this arrangement reflects much of the structure
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of the category, but for the actual position of the individual modules there was no
further mathematical justification. The rhombic picture should be seen as a definite
reassurance in this case (but it suggests deviations in other cases).

*

W

Even for the Kronecker quiver, one should be aware that there does exist a deviation,
namely the position of the simple modules. Of course, they are usually drawn far
apart, one at the left end, the other at the right end, now they are located at
the same position: in the middle lower corner. But note that the rhombic picture
for the Kronecker quiver and the algebra k[X,Y]/(X,Y)? do not differ, and the
usual Auslander-Reiten picture for the latter algebra puts its unique simple module
precisely at this position (and bends down the preprojective modules on the left as
well as the preinjective modules on the right to form half circles).

Example 2. The tame hereditary algebra of type Asr. Here is the
rhombic picture, for k£ algebraically closed:

Two modules have to be specified separately, the indecomposable modules M, M’
of length 3 and Loewy length 2: M is local, M’ uniform; note that M has type ba,
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M’ type cb. The accumulation points I, I’', I"” for the Gabriel-Roiter measure are
marked on the p-axis; similarly, the accumulation points J, J’, J” for the Gabriel-
Roiter comeasure are marked on the p*-axis (note that J =1",J' =I',J" =1 in
P(N;)). The intersection of the central and the x-central part has been dotted, this
region contains for every n € Ny a P!(k)-family of indecomposable representations
of length 3n.

One immediately realizes that the rhombic picture again corresponds quite well
to the commonly used visualization, at least after deleting the simple modules. The
preprojectives and the preinjectives are arranged horizontally, the regular modules
vertically (there is one exceptional tube of rank 2, it has four types of indecompos-
able modules, namely the types ca, ba (including M), bb and cd (inclusing M"'). Let
us take apart these three parts of the category:

Preprojectives Regular modules Preinjectives
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