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Notation
Categories and functors are always assumed to additive.
o C - category.

@ ModC - category of contravariant functors: C — Ab.

Mod C 2 LexC
Ul Ul
mod C 2 lexC

@ The Yoneda functor is denoted by Y : C — ModC.
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The Gabriel-Quillen embedding theorem

The Gabriel-Quillen embedding theorem

Theorem
Let (C,E) be a small exact category.
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The Gabriel-Quillen embedding theorem

Theorem
Let (C,E) be a small exact category.

@ There exists the following localization sequence

Ker @)

Mod C —Q— LexC
YT S

C

where R is the canonical inclusion.

R

Ec

© The composed functor Fp : C < ModC © LexC is exact and
fully faithful.

@ C is extension-closed in LexC and the exact structure E is a
class of all short sequences which belong to C.
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The Gabriel-Quillen embedding theorem

Closer look at the G(Q) theorem

Definition (Auslander)

Let  : Z — Y — X be a conflation in C. Then we have an exact
sequence

0——C(—,2) —C(—,Y)—C(—,X)

in ModC.
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The Gabriel-Quillen embedding theorem
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Definition (Auslander’66)
Define the following subcategories in Mod C.
o def C - all defects in ModC.
@ Def C - all filtered colimits of factors of defects in ModC.
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Extriangulated category

The definition

The notion of extriangulated category is a simultaneous
generalization of triangulated ones and exact ones.
Definition (Nakaoka-Palu’19)
The extriangulated category is a triple (C,E,s), where
e C - an additive category;
e [E - a biadditive functor C x C°° — Ab;

@ 5 - an assignment from an element in E(X, Z) to a sequence
Z =Y —>XinC,

with some suitable compatibility.
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Extriangulated category

Some examples

e Extension-closed subcategory in a triangulated category has
a natural extriagulated structure.

e Let (U, V) be a torsion pair in a triangulated category. Then
U has a natural extriangulated structure.
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The GQ functor for extriangulated categories

The GQ type localization sequence

Theorem (O)

Let C be a small extriangulated category. Then there exists a
localization sequence

Def C Mod C —Q—  LexC
K\\\_l///

R

where R is the canonical inclusion.

9/18



The GQ functor for extriangulated categories

A finitely presented version

Lemma (Freyd’65)
The following are equivalent for an additive category C:
@ The category C admits weak-kernels;

© The full subcategory modC is an exact abelian subcategory
in ModC.

Proposition (O)
Let C be an extriangulated category with weak-kernels. Then
def C is a Serre subcategory in modC.

Remark

The quotient functor ) : modC — 'L’zfcc does not necessarily have
a right adjoint.
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The GQ functor for extriangulated categories

The GQ functor

This situation is depicted as follows:

mod C

_ —QQ—
def C mod C def C
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The GQ functor for extriangulated categories

The GQ functor

This situation is depicted as follows:

defC —— mod C —Q— mod €
. L N L defC
~><— ~><—
¥ I
C QoY gqc

We put E¢ := Q oY and call it the GQ functor for C.
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The GQ functor for extriangulated categories

A use of the GQ functor

Theorem (O)
The GQ functor E¢ : C — gqC is:
@ exact and fully faithful iff C is an exact category;

@ an equivalence iff C is an abelian category.
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The GQ functor for extriangulated categories

The exact case

Theorem

Let C be an idempotent complete exact category with
weak-kernels. Assume that it has enough projctives.

@ There exists the following localization sequence

def C — mod C —Q— lexC
\_/ R

where R is the canonical inclusion.
@ The GQ functor E¢ : C — lexC is exact and fully faithful.

@ C is extension-closed in lexC and the exact structure E is a
class of all short exact sequences which belong to C.
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The GQ functor for extriangulated cat

Torsion class

e 7 - triangulated category.
e (U,V) - torsion pair.
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The GQ functor for extriangulated categories

Torsion class

e 7 - triangulated category.
e (U,V) - torsion pair.

Proposition
There exists the following localization sequence.

def U mod U —Q— lex A
\_/

R
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The general heart construction

The heart of (U, V)

e (U,V) - torsion pair in T.
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The heart of (U, V)

e (U,V) - torsion pair in T.

o Put W:=UnNV[-1].

o Put TH:=U[-1]«W, T :=WxVand H: =T " NT".
o H :=H/[W] - the Nakaoka heart.
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The heart of (U, V)

e (U,V) - torsion pair in T.

o Put W:=UnNV[-1].

o Put TH:=U[-1]«W, T :=WxVand H: =T " NT".
o H :=H/[W] - the Nakaoka heart.

Theorem (Nakaoka)
The Nakaoka heart H is abelian. J
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The general heart construction

The heart of (U, V)

Example
Let (U, V) be a torsion pair in T.

o If (U,V[—1]) forms a t-structure, then H is the usual heart of
it.

o If U is a (2-)cluster tilting subcategory, then H is 7 /[C]
which has been shown to be abelian by Koenig-Zhu.
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The general heart construction

Theorem (O)
The Nakaoka heart H is equivalent to lexU.
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The general heart construction

Thank you for your attention!
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