
The characteristic variety of an elliptic algebra
Ryo Kanda

Osaka University
Email: ryo.kanda.math@gmail.com

This is based on joint work with Alex Chirvasitu and S. Paul Smith [2, 3, 4].
There have been several attempts to define the space associated to a noncommutative

ring. For a graded algebra over a field k, one established approach is to look at QGrA, the
category of graded A-modules modulo the full subcategory consisting of torsion modules.
When the algebra A is commutative and finitely generated in degree one, the category
QGrA is equivalent to the category of quasi-coherent sheaves on ProjA. Thus, for a
noncommutative algebra A, we may consider QGrA as the category of “quasi-coherent
sheaves” on the associated “noncommutative projective scheme”.

To understand QGrA, the first things one should look at are objects coming from point
modules:

Definition 1. Let A be a nonnegatively graded k-algebra that is finitely generated in
degree one. A graded A-module M is called a point module if it is cyclic and satisfies

dimkMi =

1 if i ≥ 0,
0 if i < 0.

Artin-Tate-Van den Bergh [1] showed that the point modules are parametrized by a
space called the point scheme, which is defined as an inverse limit of schemes. Each point
module defines a simple object in QGrA. Point modules have played a crucial role in the
study of Artin-Schelter regular algebras.

In 1989, Feigin and Odesskii introduced a family of algebras Qn,k(E, τ) parametrized
by an elliptic curve E over C, a closed point τ ∈ E, and coprime integers n > k ≥ 1.
This is a huge generalization of higher dimensional Sklyanin algebras, and provides flat
deformations of polynomial algebras when τ varies.

The aim of this talk is to describe the major component of the point scheme of the
elliptic algebra Qn,k(E, τ), which we call the characteristic variety. For a higher dimen-
sional Sklyanin algebra, the characteristic variety is the elliptic curve E and it is the only
non-discrete irreducible component of the point scheme. For other elliptic algebras, the
characteristic variety depends on the negative continued fraction of the rational number
n/k and is realized as the quotient of a product of copies of E by a finite group.
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