Semibricks, wide subcategories and recollements

Yingying Zhang

Hohai University

August 30, 2019, Nagoya

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Semibricks.etc

3 Reduction of wide subcategories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. Semibricks.etc

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. Semibricks.etc

A: a finite-dimensional algebra over a field

1. Semibricks.etc

A : a finite-dimensional algebra over a field

Semibricks

- A module S ∈ mod A is called a *brick* if End_A(S) is a division algebra (i.e., the non-trivial endomorphisms are invertible).
 brickA = {isoclasses of bricks in mod A}.
- A set of S ∈ mod A of isoclasses of bricks is called a semibrick if Hom_A(S₁, S₂) = 0 for any S₁ ≠ S₂ ∈ S. sbrickA = {semibricks in mod A}.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Wide subcategories(Hov)

A full subcategory C of an abelian category A is called *wide* if it is abelian and closed under extensions.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Wide subcategories(Hov)

A full subcategory C of an abelian category A is called *wide* if it is abelian and closed under extensions.

Put

 $\begin{aligned} & \mathsf{wide}\mathcal{A} = \{\mathsf{wide subcategories of }\mathcal{A}\}.\\ & \mathsf{wide}\mathcal{A} = \{\mathsf{wide subcategories of } \operatorname{Mod}\mathcal{A}\}.\\ & \mathsf{wide}_{\mathcal{C}}\mathcal{A} = \{\mathsf{wide subcategories of }\mathcal{A} \text{ containing }\mathcal{C}\}. \end{aligned}$

Support τ -tilting modules (Adachi-Iyama-Reiten)

Let (X,P) be a pair with $X \in \text{mod } A$ and $P \in \text{proj } A$. We call (X,P) a support τ -tilting pair if

- X is τ -rigid, i.e., Hom_A(X, τ X)=0
- Hom_A(P, X)=0
- 3 |X| + |P| = |A|

In this case, X is called a support τ -tilting module.

Put

 $s\tau$ -tilt $A = {basic support <math>\tau$ -tilting A-modules}.

Related works

- Representations of K-species and bimodules. (Rin,1976)
- 2 τ -tilting theory. (AIR,2014)
- τ-tilting finite algebras, g-vectors and brick-τ-rigid correspondence. (DIJ,2019)
- Semibricks. (As,2019)

Recollements(BBD, FP, Ha, K)

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be abelian categories. Then a recollement of \mathcal{B} relative to \mathcal{A} and \mathcal{C} , diagrammatically expressed by

which satisfy the following three conditions:

- **1** $(i^*, i_*), (i_*, i^!), (j_!, j^*)$ and (j^*, j_*) are adjoint pairs;
- 2 $i_*, j_!$ and j_* are fully faithful functors;

$$Imi_* = Kerj^*.$$

・ロト ・四ト ・ヨト ・ヨト ・ 白ト

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Remark

- *i*_{*} and *j*^{*} are both right adjoint functors and left adjoint functors, therefore they are exact functors of abelian categories.
- $i^*i_* \cong id, i^!i_* \cong id, j^*j_! \cong id$ and $j^*j_* \cong id$. Also $i^*j_! = 0, i^!j_* = 0$.
- Obenote by R(A, B, C) a recollement of B relative to A and C as above and R(A, B, C) a recollement of mod B relative to mod A and mod C.

Remark

- *i*_{*} and *j*^{*} are both right adjoint functors and left adjoint functors, therefore they are exact functors of abelian categories.
- $i^*i_* \cong id, i^!i_* \cong id, j^*j_! \cong id$ and $j^*j_* \cong id$. Also $i^*j_! = 0, i^!j_* = 0$.
- Obenote by R(A, B, C) a recollement of B relative to A and C as above and R(A, B, C) a recollement of mod B relative to mod A and mod C.

Associated to a recollement there is a seventh funtor $j_{!*} := Im(j_! \to j_*) : \mod C \to \mod B$ called the intermediate extension functor.

Intermediate extension functor

$$i^* j_{!*} = 0, i^! j_{!*} = 0.$$

② $j^* j_{!*} \cong id$ and the functors $i_*, j_!, j_*$ and $j_{!*}$ are full embeddings.

The functor j_{!*} sends simples in mod C to simples in mod B. There is a bijection between sets of isomorphism classes of simples: (gluing simple modules)

 $\{\mathsf{simples} \in \operatorname{mod} A\} \sqcup \{\mathsf{simples} \in \operatorname{mod} C\} \to \{\mathsf{simples} \in \operatorname{mod} B\}$

given by mapping a simple $M_L \in \text{mod} A$ to $i_*(M_L)$ and a simple $M_R \in \text{mod} C$ to $j_{!*}(M_R)$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Related works

- Analysis and topology on singular spaces. (BBD,1981)
- Recollements of extension algebras. (CL,2003)
- One-point extension and recollement. (LL,2008)
- From recollement of triangulated categories to recollement of abelian categories. (LW,2010)
- Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes. (B,2010)
- Gluing silting objects. (LVY,2014)
- Lifting of recollements and gluing of partial silting sets. (SZ,arXiv2018)

Connection(Rin,Asai)

Bijections: Ringel's bijection: $sbrickA \longrightarrow wideA$

Asai's bijection: $s\tau$ -tilt $A \longrightarrow f_L$ -sbrickA via $M \longrightarrow ind(M/rad_BM)$ If A is τ -tilting finite, f_L -sbrickA =sbrickA and there is a bijection $s\tau$ -tilt $A \longrightarrow$ sbrickA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2. Gluing semibricks

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

2. Gluing semibricks

Lemma

If $F : \mod A \to \mod B$ is a fully faithful functor, then we have $F(\operatorname{brick} A) \subseteq \operatorname{brick} B$ and $F(\operatorname{sbrick} A) \subseteq \operatorname{sbrick} B$.

Proposition

Let R(A, B, C) be a recollement.

- $i_*(brickA) \subseteq brickB$ and $i_*(sbrickA) \subseteq sbrickB$;
- \bigcirc $j_!(brickC) \subseteq brickB$ and $j_!(sbrickC) \subseteq sbrickB$;
- **③** $j_*(\text{brick} C) \subseteq \text{brick} B$ and $j_*(\text{sbrick} C) \subseteq \text{sbrick} B$;
- $j_{!*}(\operatorname{brick} C) \subseteq \operatorname{brick} B$ and $j_{!*}(\operatorname{sbrick} C) \subseteq \operatorname{sbrick} B$.

(日)、(型)、(E)、(E)、(E)、(O)()

Theorem { Gluing semibricks }

Let R(A, B, C) be a recollement. $i_*(\text{sbrick}A) \sqcup j_{!*}(\text{sbrick}C) \subseteq \text{sbrick}B$.

There is an injection between sets of isomorphism classes of semibricks:

```
sbrickA \sqcup sbrickC \rightarrow sbrickB
```

through a semibrick $S_L \in \text{mod } A$ and a semibrick $S_R \in \text{mod } C$ into $i_*(S_L) \sqcup j_{!*}(S_R)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem

Let R(A, B, C) be a recollement. If B is τ -tilting finite, A and C are τ -tilting finite.

Corollary

Let A be a finite dimensional algebra and e an idempotent element of A. If A is τ -tilting finite, it follows that eAe and $A/\langle e \rangle$ are τ -tilting finite.

(日)、(型)、(E)、(E)、(E)、(O)()

Let R(A, B, C) be a recollement of module categories and B a τ -tilting finite algebra. Since semibricks can be glued via a recollement, the natural question is the following:

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Let R(A, B, C) be a recollement of module categories and B a τ -tilting finite algebra. Since semibricks can be glued via a recollement, the natural question is the following:

Question

Given a recollement of module categories, support τ -tilting modules M_A and M_C in mod A and mod C, is it possible to construct a support τ -tilting module in mod B corresponding to the glued semibrick?

Let R(A, B, C) be a recollement of module categories and B a τ -tilting finite algebra. Since semibricks can be glued via a recollement, the natural question is the following:

Question

Given a recollement of module categories, support τ -tilting modules M_A and M_C in mod A and mod C, is it possible to construct a support τ -tilting module in mod B corresponding to the glued semibrick?

Answer

Yes, there exists a unique support τ -tilting *B*-module M_B which is associated with the induced semibrick $i_*(S_A) \sqcup j_{!*}(S_C)$.

Example {Gluing support τ -tilting modules over τ -tilting finite algebras}

Let A be the path algebra over a field of the quiver $1 \rightarrow 2 \rightarrow 3$. If *e* is the idempotent $e_1 + e_2$, then as a right A-module $A/\langle e \rangle$ is isomorphic to S_3 and *eAe* is the path algebra of the quiver $1 \rightarrow 2$. In this case, there is a recollement as follows:

$$\operatorname{mod}(A/\langle e \rangle) \xrightarrow{\overset{i^*}{\longleftarrow} i_* \longrightarrow} \operatorname{mod} A \xrightarrow{\overset{j_!}{\longleftarrow} j_* \longrightarrow} \operatorname{mod}(eAe)$$

where $i^* = -\otimes_A A/\langle e \rangle$, $j_! = -\otimes_{eAe} eA$, $i^! = \operatorname{Hom}_A(A/\langle e \rangle, -)$, $i_* = -\otimes_{A/\langle e \rangle} A/\langle e \rangle$, $j^* = -\otimes_A Ae$, $j_* = \operatorname{Hom}_{eAe}(Ae, -)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Table:

$s au$ -tilt ($A/\langle e angle$)	s au-tilt A	s au-tilt (eAe)
3	$3 \begin{array}{c} 2 \\ 3 \\ 3 \\ 3 \end{array} \right) \begin{array}{c} 1 \\ 3 \\ 3 \end{array}$	$\frac{1}{2}$ 2
3	$3 \frac{1}{2} 1$	$\frac{1}{2}$ 1
3	3 <mark>2</mark> 3	2
3	3 1	1
3	3	0
0	$\frac{1}{2}$ 2	$\frac{1}{2}$ 2
0	$\frac{1}{2}$ 1	$\frac{1}{2}$ 1
0	2	2
0	1	1
0	0	0

(日) (個) (目) (目) (日) (の)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Example

Let A be the preprojective algebra of type A_3 which is given by the following quiver and relation aa' = 0, b'b = 0, bb' = a'a.

Let $e = e_1 + e_3$. Then as a right *A*-module $A/\langle e \rangle$ is isomorphic to S_2 and eAe is the preprojective algebra of type A_2 . Then there is a recollement $R(A/\langle e \rangle, A, eAe)$ induced by the idempotent e.

$s\tau\text{-tilt}\left(A/\langle e\rangle\right)$	s τ -tilt A	$s\tau$ -tilt (eAe)
2	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$\begin{smallmatrix}1&3\\3&1\end{smallmatrix}$
2	$\begin{smallmatrix}2&3&3\\3&2&1\\1\end{smallmatrix}$	$\begin{smallmatrix} 3 & 3 \\ 1 \end{smallmatrix}$
2	$\begin{smallmatrix}1&1&2\\2&2&1\\3&2&1\end{smallmatrix}$	$\frac{1}{3}$ 1
2	$\frac{2}{3}$ $\frac{3}{2}$	3
2	$\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array}$	1
2	2	0
0	3 1	$\begin{smallmatrix}1&3\\3&1\end{smallmatrix}$
0	$\begin{smallmatrix}&3&3\\2&2\\1\end{smallmatrix}$	$\begin{smallmatrix} 3 & 3 \\ 1 \end{smallmatrix}$
0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{3}$ 1
0	3	3
0	1	1
0	0	0

くして 「「」(山下(山下(山下)(山下

3. Reduction of wide subcategories

3. Reduction of wide subcategories

Theorem

There is a bijection

$$\mathsf{wide}_{i_*(\mathcal{A})}\mathcal{B} \leftrightarrow \mathsf{wide}\mathcal{C}$$

given by wide_{*i*_{*}(\mathcal{A})} $\mathcal{B} \ni \mathcal{C} \mapsto j^{*}(\mathcal{C}) \in \text{wide}\mathcal{C}$ and wide $\mathcal{C} \ni \mathcal{W} \mapsto \mathcal{C} = \{M \in \mathcal{B} | j^{*}(M) \in \mathcal{W}\} \in \text{wide}_{i_{*}(\mathcal{A})}\mathcal{B}.$

・ロト・「聞・ ・ヨト・ ヨー うべつ・

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem

If $C \subset B$ is wide and satisfies $i_*(A) \subset C$, then we can get a recollement of wide subcategories as follows:

Example

Let A be the path algebra over a field of the quiver $1 \leftarrow 2 \rightarrow 3$, of type A_3 . If e is the idempotent $e_2 + e_3$, then as a right A-module A/AeA is isomorphic to S_1 . In this case, there is a recollement as follows:

$$\operatorname{mod}(A/AeA) \xrightarrow{\overset{i^*}{\underset{i_*}{\longrightarrow}}} \operatorname{mod} A \xrightarrow{\overset{j_!}{\underset{j_*}{\longrightarrow}}} \operatorname{mod}(eAe)$$

where
$$i^* = -\otimes_A A/\langle e \rangle$$
, $j_! = -\otimes_{eAe} eA$, $i^! = \operatorname{Hom}_A(A/\langle e \rangle, -)$,
 $i_* = -\otimes_{A/\langle e \rangle} A/\langle e \rangle$, $j^* = -\otimes_A Ae$, $j_* = \operatorname{Hom}_{eAe}(Ae, -)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

Table:

mod(A/AeA)	С	$j^*(\mathcal{C})$
• 0 0 0 0 0	•••	•••
		•
		0 • 0
		0 0 •
		000

Thanks for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで