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For simplicity,

K : field

D = Homg(—, K)

algebra = finite dimensional K-algebra
module = finitely generated right module

mod A : the category of finitely generated right A-modules
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Today.

We study some functor from the derived category to the stable category.

Def.

An algebra A is called Iwanaga-Gorenstein if inj.dim A4 < oo, inj.dim 4A < oo

Def.
A=@ A : Z-graded 1G-algebra

e M € mod“A is Cohen-Macaulay & Ext7(M, A) =0
o CMZ(A) = {M e mod”A | ExtZ0(M, A) = o}
Fact.

Since A is IG, CM*(A) is a Frobenius category.

The stable category C_MZ(A) has a structure of triangulated category.

Rem. If A is self-injective, CM*(A) = mod”“A.
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For a Z-graded 1G-algebra A = EBf:O A,

3 H : DP’(mod VA) — CM“(A).
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For a Z-graded 1G-algebra A = EBf:O A,

3 H : DP’(mod VA) — CM“(A).

Def. (X-W Chen, Mori)
A= @fzo A; : Z-graded algebra
The algebra VA is called the Beilinson algebra of A :

(Ao Ay Ay - Apy Ary )
Ay Ay - Az Ay
VA =
Ay A

0 hy
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Detf.
A= @fzo A; : Z-graded 1G-algebra.

H is defined as follows.

H :D’(mod VA) — DP(mod”A) — Dgy(A)
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Detf.
A= @fzo A; : Z-graded 1G-algebra.

H is defined as follows.

H :DP(mod VA) — D(mod”A) — Dg(A) — CM%(A)

An abelian subcategory
mod %14 = { M e mod”A | M;=0 for i¢][0,{—1] }

of mod?A has a canonical projective generator T such that

2

End4(T) ~ VA.
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Detf.
A= @fzo A; : Z-graded 1G-algebra.

H is defined as follows.

H :DP(mod VA) — D(mod”A) — Dg(A) — CM%(A)

An abelian subcategory
mod %14 = { M e mod”A | M;=0 for i¢][0,{—1] }

of mod?A has a canonical projective generator T such that

2

End4(T) ~ VA.

So by Morita theory

modVA ~ mod® YA < modZA.
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Detf.
A= @fzo A; : Z-graded 1G-algebra.

H is defined as follows.

H :D"(mod VA) — DP(mod”A) — Dg(A) — CM*(A)

Def. (Buchweitz)
A=@,;>,Ai : Z-graded algebra.

The following Verdier quotient is called the singular derived category.

Dyg(A) == D"(mod”A)/ K" (proj”A)
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Detf.
A= @fzo A; : Z-graded 1G-algebra.

H is defined as follows.

H :DP(mod VA) — DP(mod”A) — Dg(A) — CM%(A)

Def. (Buchweitz)
A=@,;>,Ai : Z-graded algebra.

The following Verdier quotient is called the singular derived category.
Dyg(A) == D"(mod”A)/ K" (proj”A)

Thm. (Buchweitz)
If A is IG, then

Y

3 CM%(A) — Dy (A)
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Detf.
A= @fzo A; : Z-graded 1G-algebra.

H is defined as follows.

H : DP(mod VA) — DP(mod”A) — Dg(A) — CM%(A)

Why we study H ?

This functor H often becomes fully faithful or an equivalence.

In the case A is self-injective,
it is known a necessary and sufficient condition for

‘H to be fully faithful or an equivalence.
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Detf.
A= @fzo A; : Z-graded algebra

A is right /-strictly well-graded
(right swg)
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Detf.
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Detf.
A= @fzo A; : Z-graded algebra
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Detf.
A= @fzo A; : Z-graded algebra

A is right /-strictly well-graded (d:ef; Hom%(Ag, A(5)) =0 for all j #¢

(right swg)

Ex. A=A A & A

A is right 2-swg <

deg deg deg

0 A RN Ag —1 A —2 Ag
1 A 0 Ay > A -1 Ay
2 A, 1 A, 0 Ay — A

Hom%( Ay, A) = 0 Hom%(Ag, A(1)) =0 Hom%(Ap, A(2)) = Homy(Ag, A)
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Detf.
A= @fzo A; : Z-graded algebra

A is right /-strictly well-graded (d:ef; Hom?% (A, A(j)) =0 for all j # ¢

(right swg)

Rem.
o A= @5:0 A; : Z~graded self-injective algebra

A is right /-swg < A is left (-swg

o A= @fzo A; : basic Z-graded algebra
A is swg self-injective < DA~ A({) in mod”A.
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Thm. (X-W Chen, Happel, Minamoto-Mori Orlov, Y)
A= @5:0 A; 1 Z-graded self-injective algebra
H : DP(mod VA) — mod”(A)

(1) H is fully faithful < A is swg.

(

A is swg
(2) H is an equivalence < <

\gl.dim Ay < 00
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(
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Rem.

Original result due to Happel. He had studied the case that
A= A& DA is the trivial extension of an algebra A by DA.
So we call H Happel’s functor.
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Thm. (X-W Chen, Happel, Minamoto-Mori Orlov, Y)
A= @fzo A; 1 Z-graded self-injective algebra
H : DP(mod VA) — mod”(A)

(1) H is fully faithful < A is swg.

(

A is swg
(2) H is an equivalence < <

\gl.dim Ay < 00

Rem.

Original result due to Happel. He had studied the case that
A= A& DA is the trivial extension of an algebra A by DA.
So we call H Happel’s functor.

Aim. Give an IG-analogue of this result.
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2. Our results
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A= @fzo A; : Z-graded 1G-algebra
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Rem.
A= @fzo A; : Z-graded 1G-algebra
A is swg = H is fully faithful 77 ~ No !!

Recall.
A= @5:0 A; : Z-graded algebra
A is right strictly well-graded <= Hom%(Ay, A(j)) =0 for all j #/¢
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Rem.
A= @fzo A; : Z-graded 1G-algebra
A is swg = H is fully faithful 77 ~ No !!

Def.

A= @5:0 A; : Z-graded algebra

A is right homologically well-graded JLLN RHom% (Ao, A(j)) =0 for all j # ¢
(right hwg)

Rem.
e A isright hwg = A is right swg
o If A is self-injective, then

A is right hwg < A is right swg
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Main Thm. (Minamoto-Y)
A= @5:0 A; : Z-graded IG-algebra

H : DP(mod VA) — CM%(A)

(1) H is fully faithful < A is right hwg

(

A is right hwg
(2) H is an equivalence < <

\ gldlm Ay < 00
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Thm. (Symmetry of hwg 1G-algebras)
A= @5:0 A; : Z-graded algebra

TFAE :

(1) A is right hwg IG.

(2) A satisfies the following conditions:

(i) Ay is a cotilting bimodule over A

(ii) A(¢) ~ RHomy (A, A;) in DP(mod”A)
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Thm. (Symmetry of hwg 1G-algebras)
A= @5:0 A; : Z-graded algebra

TFAE :

(1) A is right hwg IG.

(2) A satisfies the following conditions:

(i) Ay is a cotilting bimodule over A

(ii) A(¢) ~ RHomy (A, A;) in DP(mod”A)

Thm. (Miyachi)

A cotitling bimodule gives a contravariant equivalences :

RHom ,(—, A7) : D°(mod 4g) =~ D"(mod A") - RHom yor(—, Ay).
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Thm. (Symmetry of hwg 1G-algebras)

A= @5:0 A; : Z-graded algebra

TFAE :

(1) A is right hwg IG.

(2) A satisfies the following conditions:
(i) Ay is a cotilting bimodule over A
(ii) A(¢) ~ RHomy (A, A;) in DP(mod”A)

(3) A is left hwg IG.

Thm. (Miyachi)

A cotitling bimodule gives a contravariant equivalences :

RHom 4,(—, A7) : D°(mod 4g) =~ D"(mod A’) - RHom yor(—, Ay).
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Ex. (M. Lu)
A : algebra with gl.dim A < oo.
A=A @k K[z]/(2") with degz =1

(1) A is an /-hwg IG-algebra.
(2) VA is isomorphic to
(A A A

(3) H is equivalence :

H : DP(mod Uy(A\))
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Note.

This algebra A has been studied by many researchers

(e.g. Ringel-Zhu, Lu...).

The equivalence (3) was shown by M. Lu.

His strategy is to find a tilting object in CM%(A) and apply tilting theory.

We have studied hwg IG-algebras from viewpoint of tilting theory.
If you are interested, please check our paper arXiv:1811.08036.
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Thank you for your attention.
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