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Motivation

• [L. Fuchs, Theorem 108.1] L. Fuchs, Infinite Abelian Groups,
Pure and Applied Mathematics, 36-II, Academic Press, New
York, 1973.

Baer-Kaplansky Theorem: Any two torsion abelian groups
having isomorphic endomorphism rings are isomorphic.

Other Classes

An interesting topic of research has been to find other classes
of abelian groups, and more generally, of modules, for which a
Baer-Kaplansky-type theorem is still true. Such classes have
been called Baer-Kaplansky classes by Ivanov and Vámos:
• [G. Ivanov, P. Vámos] G. Ivanov, P. Vámos, A Characterization
of FGC rings, Rocky Mountain J. Math. 32 (2002), 1485-1492.
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Motivation-Examples

• [D. Keskin Tütüncü, R. Tribak, Example 1.3] D. Keskin
Tütüncü, R. Tribak, On Baer-Kaplansky Classes of Modules,
Algebra Colloq. 24 (2017), 603-610.

The class of finitely generated abelian groups is
Baer-Kaplansky (but the class of torsion-free abelian groups is
not).

• [K. Morita, Lemma 7.4] K. Morita, Category-isomorphisms
and Endomorphism Rings of Modules, Trans. Amer. Math. Soc.
103 (1962), 451-469.

The class of all modules over a primary artinian uniserial ring is
Baer-Kaplansky.
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Motivation-Examples

• [G. Ivanov, Theorem 9] G. Ivanov, Generalizing the
Baer-Kaplansky Theorem, J. Pure Appl. Algebra 133 (1998),
107-115.

The class of all modules over a nonsingular artinian uniserial
ring is Baer-Kaplansky.
Note that in this paper, Ivanov introduced and proposed in the
study of Baer-Kaplansky classes of modules the use of the
stronger notion of IP-isomorphism (i.e.,
indecomposable-preserving isomorphism) instead of
isomorphism, together with direct sum decompositions into
indecomposables.



Motivation

For some ring R with identity:

Mod-R: The category of right R-modules.

R-Mod: The category of left R-modules.

mod-R: The category of finitely presented right R-modules.

R-mod: The category of finitely presented left R-modules.



Motivation

It is well known that there is a fully faithful functor

H : Mod-R → ((mod-R)op,Ab)

defined by H(M) = HomR(−,M), which induces an equivalence
between Mod-R and the full subcategory of flat functors in the
category ((mod-R)op,Ab) of contravariant (additive) functors
from mod-R to the category Ab of abelian groups.

Also it is well known that there is a fully faithful functor

T : R-Mod → (mod-R,Ab)

defined by T (M) = −⊗R M, which induces an equivalence
between R-Mod and the full subcategory of FP-injective
functors in the category (mod-R,Ab) of covariant (additive)
functors from mod-R to Ab.
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Motivation

These functors have been used by several authors in order to
relate properties of module categories and of the
corresponding functor categories.

M. Auslander, Coherent Functors. In: Proc. Conf. on
Categorical Algebra (La Jolla, 1965), pp. 189-231,
Springer, New York, 1966.

L. Gruson, C. U. Jensen, Dimensions Cohomologiques
Reliees Aux Foncteurs lim−→

(i). In: Lecture Notes in
Mathematics, 867, pp. 234–294, Springer-Verlag, Berlin,
1981.

B. Stenström, Purity in Functor Categories, J. Algebra 8
(1968), 352–361.
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What are our techniques?

We use functor categories techniques in order to relate
Baer-Kaplansky classes in (Grothendieck) categories to
Baer-Kaplansky classes in finitely accessible additive
categories (in particular, the category of torsion-free abelian
groups), exactly definable additive categories (in particular, the
category of divisible abelian groups) and categories σ[M] (in
particular, the category of comodules over a coalgebra over a
field). Even if our results in these categories are somehow
similar to each other, we point out that the above three types of
categories are independent in general.



RESULTS (Baer-Kaplansky Classes in Grothendieck Categori es)

Our Definition

Let C be a preadditive category and let M be a class of objects
of C. Following Ivanov and Vámos, M is called a
Baer-Kaplansky class if for any two objects M and N of M such
that EndC(M) ∼= EndC(N) (as rings), one has M ∼= N.

[S. Crivei, D. Keskin Tütüncü, Proposition 2.1] S. Crivei, D.
Keskin Tütüncü, Baer-Kaplansky Classes in Grothendieck
Categories and Applications, Mediterr. J. Math. (2019) 16:90
(17 pages)

Let F : A → B be a fully faithful covariant functor between
preadditive categories A and B. Then a class M of objects of
A is a Baer-Kaplansky class if and only if so is the class
N = {F (M) | M ∈ M}.
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RESULTS (Baer-Kaplansky Classes in Grothendieck Categori es)

Cotorsion Pair

Let C be an abelian category and let M be a class of objects of
C. Denote

M⊥ = {C ∈ C | Ext1C(M,C) = 0 for every M ∈ M},

⊥M = {C ∈ C | Ext1C(C,M) = 0 for every M ∈ M}.

Recall that a pair (A,B) of classes of objects of C is called a
cotorsion pair if A⊥ = B and ⊥B = A.

IP-Isomorphism

Recall that a ring isomorphism Φ : EndC(M) → EndC(N) is
called an IP-isomorphism if for every primitive idempotent
e ∈ EndC(M), one has Φ(e)N ∼= eM [G. Ivanov].
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RESULTS (Baer-Kaplansky Classes in Grothendieck Categori es)

[S. Crivei, D. Keskin Tütüncü, Theorem 2.2, Corollaries 2.3, 2.4
and 2.5]

Let M and N be objects of a Grothendieck category C such that
M has a direct sum decomposition into indecomposable objects
and there exists an IP-isomorphism Φ : EndC(M) → EndC(N).
Then:

1 M is (isomorphic to) a pure subobject of N.
2 If (A,B) is a cotorsion pair in C, M ∈ B and N/M ∈ A, then

M and N are isomorphic.



RESULTS (Baer-Kaplansky Classes in Grothendieck Categori es)

Corollaries of the previous theorem

Let C be a Grothendieck category. Let M and N be objects
of C such that M has a direct sum decomposition into
indecomposable objects and there exists an
IP-isomorphism Φ : EndC(M) → EndC(N). If one of the
following conditions holds:

1 M is injective;
2 N/M is projective;

then M and N are isomorphic.

Let C be a (locally coherent) Grothendieck category. Let M
and N be objects of C such that M is cotorsion and N is flat
(N is FP-injective and N/M is FP-projective). Assume that
M has a direct sum decomposition into indecomposable
objects and there exists an IP-isomorphism
Φ : EndC(M) → EndC(N). Then M and N are isomorphic.



RESULTS (Baer-Kaplansky Classes in Grothendieck Categori es)

Recall that an object M of any Grothendieck category C is
called:

flat if every epimorphism C → M is pure;

FP-injective if every monomorphism M → C is pure;

cotorsion if Ext1
C
(F ,M) = 0 for every flat object F of C;

FP-projective if Ext1
C
(M,F ) = 0 for every FP-injective

object F of C.

J. Xu, Flat Covers of Modules, Lecture Notes in Math.,
1634, Springer, Berlin, 1996.

L. Mao, On Covers and Envelopes in some Functor
Categories, Comm. Algebra 41 (2013), 1655-1684.



RESULTS (Baer-Kaplansky Classes in Grothendieck Categori es)

[S. Crivei, D. Keskin Tütüncü, Theorem 2.7]

Let C be a Grothendieck category. Let M be a class of objects
of C closed under summands such that every object of M has a
direct sum decomposition into indecomposable summands and
the finite embedding property. Then M is Baer-Kaplansky if
and only if the class of indecomposable objects of M is
Baer-Kaplansky.

Let C be a category and let M be an object of C. Let
M =

⊕
k∈K Mk be a direct sum decomposition into

indecomposable summands. A subobject L of M is called
finitely embedded in M with respect to the above direct sum
decomposition of M if L ⊆

⊕
k∈F Mk for some finite F ⊆ K .

Then M has the finite embedding property if every
indecomposable summand of M is finitely embedded in M with
respect to the above direct sum decomposition [G. Ivanov].



RESULTS (Baer-Kaplansky Classes in Grothendieck Categori es)

Corollary of the previous theorem

Let R be a ring with enough idempotents.

The class of semisimple right R-modules is
Baer-Kaplansky if and only if the class of simple right
R-modules is Baer-Kaplansky ([D. Keskin Tütüncü, R.
Tribak, Proposition 2.12]).

Assume that R is semiperfect. Then the class of finitely
generated projective right R-modules is Baer-Kaplansky if
and only if the class of projective local right R-modules is
Baer-Kaplansky.

Assume that R is right noetherian. Then the class of finitely
generated injective right R-modules is Baer-Kaplansky if
and only if the class of finitely generated indecomposable
injective right R-modules is Baer-Kaplansky.



A module M over a ring (with enough idempotents) is called
local if M has a proper submodule which contains all other
proper submodules (e.g., see [R. Wisbauer, Foundations of
module and ring theory, Gordon and Breach, Reading, 1991]).



RESULTS (Baer-Kaplansky Classes in Finitely Accessible
Categories)

Some Terminology

W. Crawley-Boevey, Locally finitely presented additive
categories, Comm. Algebra 22 (1994), 1641–1674.

M. Prest, Definable additive categories: purity and model
theory, Mem. Amer. Math. Soc., 210, No. 987 (2011).

An additive category C is called finitely accessible if it has direct
limits, the class of finitely presented objects is skeletally small,
and every object is a direct limit of finitely presented objects.
The category of unitary modules over a ring with enough
idempotents, the category of torsion abelian groups and the
category of torsion-free abelian groups are typical examples of
finitely accessible additive categories.



RESULTS (Baer-Kaplansky Classes in Finitely Accessible
Categories)

Some Terminology

Let C be a finitely accessible additive category. By a sequence

0 → X f
→ Y

g
→ Z → 0 in the additive category C we mean a

pair of composable morphisms f : X → Y and g : Y → Z such
that gf = 0. The sequence is called pure exact if it induces an
exact sequence of abelian groups
0 → HomC(P,X ) → HomC(P,Y ) → HomC(P,Z ) → 0 for every
finitely presented object P of C. This implies that f and g form a
kernel-cokernel pair, that f is a monomorphism and g an
epimorphism. In such a pure exact sequence f is called a pure
monomorphism and g a pure epimorphism. An object M of C is
called pure-injective if every pure exact sequence in C with the
first term M splits, and pure-projective if every pure exact
sequence in C with the third term M splits.
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RESULTS (Baer-Kaplansky Classes in Finitely Accessible
Categories)

Some Terminology-Facts

W. Crawley-Boevey, Locally finitely presented additive
categories, Comm. Algebra 22 (1994), 1641–1674.

N. V. Dung, J. L. García, Additive categories of locally finite
representation type, J. Algebra 238 (2001), 200–238.

I. Herzog, Pure-injective envelopes, J. Algebra Appl. 4
(2003), 397–402.

Let C be a finitely accessible additive category. Then there is a
Grothendieck category A(C) (uniquely determined up to
equivalence) and a fully faithful functor H : C → A(C) (naturally
isomorphic to the inclusion functor), which induces an
equivalence between C and the full subcategory of flat objects
of A(C). Moreover, a sequence in C is pure exact if and only if
H takes it into an exact sequence in A(C).



RESULTS (Baer-Kaplansky Classes in Finitely Accessible
Categories)

[S. Crivei, D. Keskin Tütüncü, Theorem 3.4]

Let C be a finitely accessible additive category. Let X and Y be
objects of C such that X has a direct sum decomposition into
indecomposable subobjects and there exists an
IP-isomorphism Φ : EndC(X ) → EndC(Y ). If one of the following
conditions holds:

1 Y/X is pure-projective;
2 X is pure-injective;

then X and Y are isomorphic.

[S. Crivei, D. Keskin Tütüncü, Corollary 3.5]

Let C be a f. a. a. category. Let X and Y be objects of C such
that X is Σ-pure-injective. If there exists an IP-isomorphism
Φ : EndC(X ) → EndC(Y ), then X and Y are isomorphic.



RESULTS (Baer-Kaplansky Classes in Finitely Accessible
Categories)

A finitely accessible additive category C is called Krull-Schmidt
if every finitely presented object of C has a finite direct sum
decomposition into subobjects with local endomorphism rings

[S. Crivei, D. Keskin Tütüncü, Theorem 3.7]

Let C be a Krull-Schmidt finitely accessible additive category.
The following are equivalent:

1 The class of finitely presented objects of C is
Baer-Kaplansky.

2 The class of pure-projective indecomposable objects of C
is Baer-Kaplansky.

3 The class of finitely presented indecomposable objects of
C is Baer-Kaplansky.



RESULTS (Baer-Kaplansky Classes in Finitely Accessible
Categories)

A finitely accessible additive category C is called pure
semisimple if every pure exact sequence in C splits.

[S. Crivei, D. Keskin Tütüncü, Corollary 3.9]

Let C be a pure semisimple finitely accessible additive category.
Then the class of finitely presented objects of C is
Baer-Kaplansky if and only if the class of (finitely presented)
indecomposable objects of C is Baer-Kaplansky.



RESULTS (Baer-Kaplansky Classes in Exactly Definable
Categories)

Some Terminology

H. Krause, Exactly definable categories, J. Algebra 201
(1998), 456–492.

M. Prest, Definable additive categories: purity and model
theory, Mem. Amer. Math. Soc., 210, No. 987 (2011).

An additive category C is called exactly definable if it is
equivalent to the category Ex(Aop,Ab) of exact contravariant
additive functors from A to the category Ab of abelian groups
for some skeletally small abelian category A.



RESULTS (Baer-Kaplansky Classes in Exactly Definable
Categories)

Some Terminology-Facts

Every finitely accessible additive category with products is
exactly definable ([W. Crawley-Boevey, 3.3, Locally finitely
presented additive categories, Comm. Algebra 22 (1994),
1641–1674]).

More generally, an additive category is exactly definable if
and only if it is a definable subcategory (in the sense that it
is closed under products, direct limits and pure subobjects)
of a finitely accessible additive category with products ([M.
Prest, Proposition 11.1, Definable additive categories:
purity and model theory, Mem. Amer. Math. Soc., 210, No.
987 (2011)]).



RESULTS (Baer-Kaplansky Classes in Exactly Definable
Categories)

Some Terminology-Facts

[M. Prest, Examples 10.2, 10.3 and 10.5], Definable
additive categories: purity and model theory, Mem. Amer.
Math. Soc., 210, No. 987 (2011)).

[M. Prest, Theorem 3.6], Abelian categories and definable
additive categories, arXiv:1202.0426, 2012.

The category of unitary modules over a ring with enough
idempotents,

The category of torsion abelian groups,

The category of torsion-free abelian groups

are not only finitely accessible categories, but also exactly
definable.



RESULTS (Baer-Kaplansky Classes in Exactly Definable
Categories)

Some Terminology-Facts

A Grothendieck category is exactly definable if and only if it
is finitely accessible (3.6).

In general, exactly definable additive categories need not
be finitely accessible. For instance, the category of
divisible abelian groups is a definable subcategory of the
category of abelian groups, hence it is exactly definable,
but not finitely accessible (10.3).



RESULTS (Baer-Kaplansky Classes in Exactly Definable
Categories)

Some Terminology

Let C be an exactly definable additive category. An object M of
C is called pure-injective if for every set I the summation
morphism M(I) → M factors through the canonical morphism

M(I) → M I . A sequence 0 → X f
→ Y

g
→ Z → 0 in C is called

pure exact if it induces an exact sequence of abelian groups
0 → HomC(Z ,Q) → HomC(Y ,Q) → HomC(X ,Q) → 0 for every
pure-injective object Q of C. This implies that f and g form a
kernel-cokernel pair, that f is a monomorphism and g an
epimorphism. In such a pure exact sequence f is called a pure
monomorphism and g a pure epimorphism. An object M of C is
called pure-projective if every pure exact sequence in C with the
third term M splits.



RESULTS (Baer-Kaplansky Classes in Exactly Definable
Categories)

Some Terminology-Facts

Let C be an exactly definable additive category. Then there is a
locally coherent Grothendieck category D(C) (uniquely
determined up to equivalence) and a fully faithful functor
T : C → D(C) (naturally isomorphic to the inclusion functor),
which induces an equivalence between C and the full
subcategory of FP-injective objects of D(C). Moreover, a
sequence in C is pure exact if and only if T takes it into an exact
sequence in D(C) (Krause).



RESULTS (Baer-Kaplansky Classes in Exactly Definable
Categories)

[S. Crivei, D. Keskin Tütüncü, Theorem 4.5]

Let C be an exactly definable additive category. Let X and Y be
objects of C such that X has a direct sum decomposition into
indecomposable subobjects and there exists an
IP-isomorphism Φ : EndC(X ) → EndC(Y ). If one of the following
conditions hold:

1 X is pure-injective;
2 Y/X is pure-projective;

then X and Y are isomorphic.

[S. Crivei, D. Keskin Tütüncü, Corollary 4.6]

Let C be an e. d. a. category. Let X and Y be objects of C such
that X is Σ-pure-injective. If there exists an IP-isomorphism
Φ : EndC(X ) → EndC(Y ), then X and Y are isomorphic.



RESULTS (Baer-Kaplansky Classes in Exactly Definable
Categories)

An exactly definable additive category C is called pure
semisimple if every pure exact sequence in C splits.

[S. Crivei, D. Keskin Tütüncü, Theorem 4.8]

Let C be a pure semisimple exactly definable additive category.
Then the class of finitely presented objects of C is
Baer-Kaplansky if and only if the class of finitely presented
indecomposable objects of C is Baer-Kaplansky.



RESULTS (Baer-Kaplansky Classes in Categories σ[M])

Some Terminology-Facts

Let R be a ring with identity and M a left R-module. Then the
category σ[M] is the full subcategory of the category of left
R-modules consisting of modules isomorphic to
M-subgenerated modules ([R. Wisbauer, Section 15,
Foundations of module and ring theory, Gordon and Breach,
Reading, 1991]). It is the smallest Grothendieck category
containing M. For instance, when M = R, σ[M] is the category
of left R-modules. Also, when C is a coalgebra over a field k , C
is a left C∗-module, where C∗ = Homk (C, k), and σ[C∗C] is the
category of right C-comodules ([S. Dăscălescu, C. Năstăsescu,
Ş. Raianu, Hopf Algebras. An Introduction, Marcel Dekker, New
York, 2001]).



RESULTS (Baer-Kaplansky Classes in Categories σ[M])

Some Terminology-Facts

In general σ[M] need not be finitely accessible ([M. Prest, R.
Wisbauer, Example 1.7, M. Prest, R. Wisbauer, Finite
presentation and purity in categories σ[M], Colloq. Math. 99
(2004), 189–202]).



RESULTS (Baer-Kaplansky Classes in Categories σ[M])

Some Terminology-Facts

One may define purity, pure-injectivity and pure-projectivity in
categories σ[M] in a similar way as for a usual module category
([R. Wisbauer, Section 34, Foundations of module and ring
theory, Gordon and Breach, Reading, 1991]).
If (Ui)i∈I is a representing set of all finitely presented objects of
σ[M], then one may construct a certain ring with enough
idempotents associated to σ[M], called the functor ring of σ[M]
([R. Wisbauer, Section 52, Foundations of module and ring
theory, Gordon and Breach, Reading, 1991]).



RESULTS (Baer-Kaplansky Classes in Categories σ[M])

• [R. Wisbauer, 52.2] R. Wisbauer, Foundations of module and
ring theory, Gordon and Breach, Reading, 1991.

Let R be a ring with identity, M a left R-module and T the
functor ring of σ[M]. Let (Ui)i∈I be a representing set of all
finitely presented objects of σ[M] and U =

⊕
i∈I Ui . Assume

that U is a generator in σ[M]. Then there is a fully faithful
functor

F : σ[M] → T -Mod,

which induces an equivalence between σ[M] and the full
subcategory of flat left T -modules. Moreover, a sequence in
σ[M] is pure exact if and only if F takes it into a (pure) exact
sequence in T -Mod.



RESULTS (Baer-Kaplansky Classes in Categories σ[M])

[S. Crivei, D. Keskin Tütüncü, Theorem 5.2]

Let R be a ring with identity and let M be a left R-module. Let X
and Y be objects of σ[M] such that X has a direct sum
decomposition into indecomposable subobjects and Y/X is
pure-projective. If there exists an IP-isomorphism
Φ : EndR(X ) → EndR(Y ), then X and Y are isomorphic.



RESULTS (Baer-Kaplansky Classes in Categories σ[M])

A left R-module M is called pure semisimple if every pure exact
sequence in σ[M] splits.

[S. Crivei, D. Keskin Tütüncü, Corollary 5.4]

Let R be a ring with identity and let M be a pure semisimple left
R-module. Then the class of finitely presented objects of σ[M]
is Baer-Kaplansky if and only if the class of (finitely presented)
indecomposable objects of σ[M] is Baer-Kaplansky.



THANK YOU VERY MUCH!


