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Given a triangulated category T , Rouquier introduced the
dimension dim T of T (2006). Roughly speaking, this di-
mension is an invariant that measures how quickly the cat-
egory can be built from one object.

Let Λ be an artin algebra. Let mod Λ be the category of
finitely generated right Λ-modules and let Db(mod Λ) be the
bounded derived category of mod Λ respectively. The up-
per bounds for the dimension of Db(mod Λ) can be given in
terms of the Loewy length LL(Λ) and the global dimension
gl.dim Λ of Λ.

Theorem 1.1. (Rouquier, 2008)
Let Λ be an artin algebra. Then

dim Db(mod Λ) 6 min{LL(Λ)− 1, gl.dim Λ}.
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As an analogue of the dimension of triangulated categories, the
(extension) dimension dimA of an abelian category A was intro-
duced by Beligiannis (2008).

Let Λ be an artin algebra. Note that the representation dimen-
sion rep.dim Λ of Λ is at most two (that is, Λ is of finite repre-
sentation type) if and only if dim mod Λ = 0 (Beligiannis, 2008).
So, like rep.dim Λ, the extension dimension dim mod Λ is also an
invariant that measures how far Λ is from having finite represen-
tation type.

It was proved that dim mod Λ ≤ LL(Λ) − 1 (Beligiannis, 2008),
which is a semi-counterpart of the above result of Rouquier.

Aim
We will investigate further properties of the extension dimension
of abelian categories, especially the relationship between this
dimension and other homological invariants.
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2.1. The extension dimension of abelian categories

Let A be an abelian category. The designation subcategory will
be used for full and additive subcategories ofA which are closed
under isomorphisms, and the functor will mean an additive func-
tor between additive categories.

For a subclass U of A, we use addU to denote the subcategory
of A consisting of direct summands of finite direct sums of ob-
jects in U .

Let U1,U2, · · · ,Un be subcategories of A. Define U1 � U2 :=
add{A ∈ A | there exists an exact sequence

0→ U1 → A→ U2 → 0

in A with U1 ∈ U1 and U2 ∈ U2}. The operator � is associative
(Dao-Takahashi, 2014).
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The category U1 � U2 � · · · � Un can be inductively described as
U1 � U2 � · · · � Un := add{A ∈ A | there exists an exact sequence

0→ U → A→ V → 0

in A with U ∈ U1 and V ∈ U2 � · · · � Un}.

For a subclass U of A, set 〈U〉0 := 0, 〈U〉1 := addU , 〈U〉n :=
〈U〉1 � 〈U〉n−1 for any n ≥ 2. If T is an object in A we write 〈T〉n
instead of 〈{T}〉n.

Definition 2.1. (Beligiannis, 2008; Dao-Takahashi, 2014)
For any subcategory X of A, define

sizeAX := inf{n ≥ 0 | X ⊆ 〈T〉n+1 with T ∈ A},

rankAX := inf{n ≥ 0 | X = 〈T〉n+1 with T ∈ A}.

The extension dimension dimA of A is defined to be dimA :=
rankAA.
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2.2. Radical layer length and torsion pairs

Let C be a length-category, that is, C is an abelian, skeletally
small category and every object of C has a finite composition
series. We use EndZ(C) to denote the category of all additive
functors from C to C, and use rad to denote the Jacobson radical
lying in EndZ(C).

For any α ∈ EndZ(C), set the α-radical functor Fα := rad ◦α.

Definition 2.2. (Huard-Lanzilotta-Mendoza Hernández, 2013)

For any α, β ∈ EndZ(C), we define the (α, β)-layer length ``βα :

C −→ N ∪ {∞} via ``βα(M) = min{i > 0 | α ◦ βi(M) = 0}; and the
α-radical layer length ``α := ``Fα

α .
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Recall that a torsion pair (or torsion theory) for C is a
pair of classes (T ,F) of objects in C satisfying the following
conditions.
(1) HomC(M,N) = 0 for any M ∈ T and N ∈ F ;
(2) an object X ∈ C is in T if HomC(X,−)|F = 0;
(3) an object Y ∈ C is in F if HomC(−,Y)|T = 0.

Let (T ,F) be a torsion pair for C. Recall that the torsion
radical t attached to (T ,F) is a functor in EndZ(C) such
that for any M ∈ C,

0→ t(M)→ M → M/t(M)→ 0

is exact with M/t(M) ∈ F .
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Relations with some homological invariants

3. Relations with some homological in-
variants
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In this section, A is an abelian category.

Definition 3.1. (Iyama, 2003; Oppermann, 2009)
Let M ∈ A. The weak M-resolution dimension of an object X
in A, denoted by M-w.resol.dim X, is defined as inf{i ≥ 0 | there
exists an exact sequence

0 −→ Mi −→ Mi−1 −→ · · · −→ M0 −→ X −→ 0

in A with all Mj in add M}. The weak M-resolution dimen-
sion of A, M-w.resol.dimA, is defined as sup{M-w.resol.dim X |
X ∈ A}. The weak resolution dimension of A is denoted by
w.resol.dimA and defined as inf{M-w.resol.dimA | M ∈ A}.

For a subclass X of A, recall that a sequence S in A is called
HomA(X ,−)-exact (resp. HomA(−,X )-exact) if HomA(X, S) (resp.
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3.1. Representation and global dimensions

Definition 3.1. (Auslander, 1971; Rouquier, 2006)
The representation dimension rep.dimA of A is the smallest
integer i ≥ 2 such that for any X ∈ A, there exists M ∈ A satis-
fying the following conditions.
(1) there exists a HomA(add M,−)-exact exact sequence

0 −→ Mi−2 −→ Mi−3 −→ · · · −→ M0 −→ X −→ 0

in A with all Mj in add M; and
(2) there exists a HomA(−, add M)-exact exact sequence

0 −→ X −→ N0 −→ N1 −→ · · · −→ Ni−2 −→ 0

in A with all Nj in add M.
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We call A ∈ A an additive generating object if add A is a gen-
erator for A. It is trivial that if A ∈ A is an additive generating
object, then all projective objects in A are in add A.

Theorem 3.2.
Assume that A admits an additive generating object A. If A has
enough projective objects and enough injective objects, then

w.resol.dimA = dimA ≤ rep.dimA−2.

As applications of Theorem 3.2, we get the following four corol-
laries.

Corollary 3.3.
If Λ is a right Morita ring, then

w.resol.dim mod Λ = dim mod Λ ≤ min{r.gl.dim Λ, rep.dim Λ− 2}.
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From now on, Λ is an artin algebra.

Λ is called n-Gorenstein if its left and right self-injective
dimensions are at most n.

Let P be the subcategory of mod Λ consisting of projective
modules. A module G ∈ mod Λ is called Gorenstein pro-
jective if there exists a HomΛ(−,P)-exact exact sequence

· · · → P1 → P0 → P0 → P1 → · · ·

in mod Λ with all Pi,Pi in P such that G ∼= Im(P0 → P0).

Λ is said to be of finite Cohen-Macaulay type (finite CM-
type for short) if there are only finitely many non-isomorphic
indecomposable Gorenstein projective modules in mod Λ.
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Corollary 3.4.
If Λ is an n-Gorenstein algebra of finite CM-type, then
dim mod Λ ≤ n.

For small dim mod Λ, we have the following

Corollary 3.5.
(1) (Beligiannis, 2008) rep.dim Λ ≤ 2 if and only if dim mod Λ =

0;
(2) if rep.dim Λ = 3, then dim mod Λ = 1.

For a field k and n ≥ 1, ∧(kn) is the exterior algebra of kn.

Corollary 3.6.
dim mod∧(kn) = n− 1 for any n ≥ 1.
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3.2. Finitistic dimension

Ωn(M): the n-th syzygy of M in mod R.
Ωn(X ) := {Ωn(M) | M ∈ X} for a subclass X of mod Λ.
P<∞ := {M ∈ mod Λ | pd M <∞}.

Recall that the finitistic dimension fin.dim Λ of Λ is defined
as sup{pd M | M ∈ P<∞}. It is an unsolved conjecture that
fin.dim Λ <∞ for every artin algebra Λ.

Proposition 3.7.
The following statements are equivalent.
(1) fin.dim Λ <∞;
(2) there exists some n ≥ 0 such that sizemod ΛΩn(P<∞) ≤ 1.

Corollary 3.8.
If dim mod Λ ≤ 1, then fin.dim Λ <∞.
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3.3. Igusa-Todorov algebras

Definition 3.8. (Wei, 2009)
For an integer n ≥ 0, Λ is called n-Igusa-Todorov if there exists
V ∈ mod Λ such that for any M ∈ mod Λ, there exists an exact
sequence 0 −→ V1 −→ V0 −→ Ωn(M) ⊕ P −→ 0 in mod Λ with
V1, V0 ∈ add V and P projective.

Theorem 3.9.
For any n ≥ 0, the following statements are equivalent.
(1) Λ is n-Igusa-Todorov;
(2) sizemod ΛΩn(mod Λ) ≤ 1.
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The first assertion in the following proposition means that dim mod Λ
is an invariant for measuring how far Λ is from being 0-Igusa-
Todorov.

Corollary 3.10.
(1) Λ is 0-Igusa-Todorov if and only if dim mod Λ ≤ 1;
(2) if Λ is n-Igusa-Todorov, then dim mod Λ ≤ n + 1.

Moreover, we have the following

Corollary 3.11.
dim mod Λ ≤ 2 if Λ is in one class of the following algebras.
(1) monomial algebras;
(2) left serial algebras;
(3) rad2n+1 Λ = 0 and Λ/ radn Λ is representation finite;
(4) 2-syzygy finite algebras.
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(3) rad2n+1 Λ = 0 and Λ/ radn Λ is representation finite;
(4) 2-syzygy finite algebras.
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3.4. tS-radical layer length

Let Λ be an artin algebra. Then mod Λ is a length-category.

For a subclass B of mod Λ, the projective dimension pdB
of B is defined as

pdB =

{
sup{pd M | M ∈ B}, if B 6= ∅;

−1, if B = ∅.

S<∞: all pairwise non-isomorphism simple Λ-modules with
finite projective dimension.

S: a subset of S<∞.

S ′: the set of all the others simple modules in mod Λ.
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F (S) := {M ∈ mod Λ | there exists a finite chain

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M

of submodules of M such that each quotient Mi/Mi−1 is iso-
morphic to some module in S}.
TS := {M ∈ mod Λ | top M ∈ addS ′}.

Then (TS ,F(S)) is a torsion pair. We denote the torsion radical
attached to (TS ,F(S)) by tS . Then tS(M) ∈ TS and M/tS(M) ∈
F(S) for any M ∈ mod Λ, and

F(S) = {M ∈ mod Λ | tS(M) = 0},

TS = {M ∈ mod Λ | tS(M) = M}.

(Huard-Lanzilotta-Mendoza Hernández, 2013)
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Theorem 3.12.
Let S be a subset of S<∞. Then

dim mod Λ ≤ pdS +``tS (Λ).

As a consequence, we have the following

Corollary 3.13.
(1) (Beligiannis, 2008) dim mod Λ ≤ LL(Λ)− 1;
(2) (cf. Corollary 3.3 and Iyama, 2013) dim mod Λ ≤ gl.dim Λ.

Proof.

(1) Let S = ∅. Then pdS = −1 and the torsion pair (TS ,F(S)) = (mod Λ, 0). According to Huard-Lanzilotta-
Mendoza Hernández (2013), we have tS(Λ) = Λ and ``tS (Λ) = LL(Λ). It follows from Theorem 3.12 that
dim mod Λ ≤ LL(Λ)− 1.

(2) Let S = S<∞ = {all simple modules in mod Λ}. Then pdS = gl.dim Λ and the torsion pair (TS ,F(S)) =
(0,mod Λ). According to Huard-Lanzilotta-Mendoza Hernández (2013), we have tS(Λ) = 0 and ``tS (Λ) = 0. It
follows from Theorem 3.12 that dim mod Λ ≤ gl.dim Λ.
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By choosing some suitable S and applying Theorem 3.12, we
may obtain more precise upper bounds for dim mod Λ than that
in Corollary 3.13.

Example 3.14.
Consider the bound quiver algebra Λ = kQ/I, where k is a field
and Q is given by

2n + 1

2n 1α2n
oo

α2n+1

OO

α1 //

αn+1

��

2
α2 // 3

α3 // · · ·
αn−1 // n

n + 1
αn+2 // n + 2

αn+3 // n + 3
αn+4 // · · ·

α2n−1// 2n− 1

and I is generated by {αiαi+1 | n + 1 ≤ i ≤ 2n− 2} with n ≥ 5.
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Example 3.14. (continued)
(1) We have LL(Λ) = n and gl.dim Λ = n − 1. So by Corollary
3.13, we have dim mod Λ ≤ min{gl.dim Λ,LL(Λ)− 1} = n− 1.

(2) We have S<∞ = {all simple modules in mod Λ}. Choose

S = {S(i) | 2 ≤ i ≤ n}.

By computation, we have

pdS = 1 and ``tS (Λ) = max{``tS (P(i)) | 1 ≤ i ≤ 2n + 1} = 2.

Then by Theorem 3.12, we have

dim mod Λ ≤ pdS +``tS (Λ) = 1 + 2 = 3.

The upper bound here is better than that in (1) since n ≥ 5.
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Thank you!
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