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Introduction

In the late 1990s,

Enochs asked whether each
covering class of modules is closed under
direct limits.

This problem is still open in general.
Covers and envelopes were introduced in the
early 1980s by Enochs and independently,
by Auslander and Smalø.
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Introduction

Enochs

gave a general definition in terms
of commutative diagrams for modules over ar-
bitrary rings.

Auslander and Smalø, mainly concerned with
the case of finitely generated modules over fi-
nite dimensional algebras, stressed the func-
torial viewpoint and coined the terminology of
contravariant and covariant finiteness.
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Introduction

Enochs first noticed the categorical version
of injective envelopes.

He made a general definition of envelopes
and covers by diagrams for a given class of
modules in 1981 (Injective and flat covers,
envelopes and resolvents, Israel J. Math. 39).
In this setting, all the existing envelopes and
covers can be recovered by specializing the
class of modules.
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Introduction

The work of Enochs provided a common frame
for a number of classical notions,

such as
injective envelopes and projective covers.

On the other hand, it also raised many chang-
ing problems that are still object of current
research.
For instance, the well-known Flat Cover Con-
jecture, asserting that each module admits a
flat cover, remained open for almost twenty
years and was settled in 2001.
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2.1 Covers

Let C be a class of modules and M a module.
A C-cover of M is a homomorphism φ : C → M with C ∈ C
such that:

C′

(a) Any diagram
��

with C
′ ∈ C can be completed.

��
C

φ
// M

C
(b) The diagram

��
φ

can be completed only by auto-
��

C
φ
// M

morphisms of C.
If φ satisfies (a) and perhaps not (b), it is called a C-precover.
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An epimorphism φ : C → M with C ∈ C is
called a special C-precover of M

if ker(φ) ∈
C⊥ = {X : Ext1(C,X) = 0 for all C ∈ C}.
The class C is called (pre)covering if every
R-module has a C-(pre)cover.
Dually, we have the definitions of a (special)
C-(pre)envelope and a (pre)enveloping class.
C-precover = right C-approximation

C-cover = minimal right C-approximation
C-preenvelope = left C-approximation

C-envelope = minimal left C-approximation
precovering = contravariantly finite
preenveloping = covariantly finite.
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C-preenvelope = left C-approximation

C-envelope = minimal left C-approximation

precovering = contravariantly finite
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2.2 Cotorsion pair (or cotorsion theory)

A pair (F , C) of classes of R-modules is called
a cotorsion pair (or cotorsion theory)

if
F = ⊥C = {F : Ext1(F,C) = 0 for all C ∈ C},
C = F⊥ = {C : Ext1(F,C) = 0 for all F ∈ F}.

For a class C, (⊥(C⊥), C⊥) is a cotorsion pair
generated by C, and (⊥C, (⊥C)⊥) is a cotor-
sion pair cogenerated by C.
For example, (R-Mod, Inj) and (Proj, R-Mod)
are cotorsion pairs.
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2.3 Complete cotorsion pair

A cotorsion pair (F , C) is called complete

if
every R-module has a special F-precover, or
equivalently, if every R-module has a special
C-preenvelope.

For example, (R-Mod, Inj), (Proj, R-Mod) and
(F lat, Cot) are complete cotorsion pairs.
Any cotorsion pair generated by a set of mod-
ules is complete, i.e., (⊥(C⊥), C⊥) is complete
if C is a set of modules.
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2.4 Perfect (closed) cotorsion pair

A cotorsion pair (F , C) is called perfect

if F is
a covering class and C is an enveloping class.

A cotorsion pair (F , C) is called closed if F is
closed under direct limits.

Every perfect cotorsion pair is complete.

If (F , C) is a complete and closed cotorsion
pair, then it is perfect.
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For example,

(R-Mod, Inj) and (F lat, Cot) are
perfect cotorsion pairs.

(Proj, R-Mod) is not perfect in general.

Any cotorsion pair cogenerated by a class
of pure injective modules is perfect, i.e.,
(⊥C, (⊥C)⊥) is a perfect cotorsion pair if C is
a class of pure injective modules.
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Enochs Conjecture

Enochs Conjecture:
Every covering class of modules is

closed under direct limits.
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Enochs Conjecture

Motivation:

The class of projective left R-modules is cov-
ering ⇐⇒ it is closed under direct limits (i.e.,
R is a left perfect ring).
The class of injective left R-modules is cover-
ing ⇐⇒ it is closed under direct limits (i.e., R
is a left Noetherian ring).
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the class of injective
left R-modules is (pre)covering ⇐⇒ it is closed
under direct limits (i.e., R is a left Noetherian
ring).

The class of absolutely pure left R-modules
is a (pre)covering class ⇐⇒ it is closed
under direct limits (i.e., R is left coherent ring)?
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Recall that a ring R is left coherent if every
finitely generated left ideal of R is finitely pre-
sented.
A module M is said to be absolutely pure (or
FP-injective) if M is pure in every module con-
taining it as a submodule, or equivalently, if
Ext1(F, M) = 0 for all finitely presented mod-
ules F.
We will use Abs to denote the class of abso-
lutely pure left R-modules.
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In 2008,

Pinzon proved that if R is a left co-
herent ring, then Abs is a covering class.

In 2018, we proved that if A is a covering
class of modules closed under pure submod-
ules, extensions and direct products, then
A is closed under direct limits.
Recently, we showed that if A is a precov-
ering class of modules closed under pure
submodules and direct products, then A is
closed under direct limits.
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Theorem
The following are equivalent for a ring R.

1 R is left coherent.
2 Abs is precovering.
3 Abs is covering.
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Remark 1

The theorem above generalizes the charac-
terizations of Noetherian rings in terms of injec-
tive (pre)covers:

The following are equivalent for a ring R.
1 R is left Noetherian.
2 Inj is precovering.
3 Inj is covering.

However, the proofs are totally different.
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Remark 2

We have just proved that
R is a left coherent ring

⇐⇒ the class of absolutely pure left
R-modules is covering.
? R

⇐⇒ the class of flat left R-modules
is enveloping.
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J. Šaroch, On the non-exsitance of right almost split maps, Invent. Math.
209 (2017), 463-479.
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