Wide subcategories and lattices of torsion classes

joint with Calvin Pfeifer (Universität Bonn), arXiv:1905.01148

> Sota Asai (RIMS, Kyoto Univ.) 2019/08/27

Torsion pairs

Let $\mathcal R$ be an (ess. small) abelian length category.

• Any object $X \in \mathcal{A}$ has a composition series $0 = X_0 \subset X_1 \subset \cdots \subset X_n = X$ with X_i/X_{i-1} : simple.

Definition [Dickson]

Let $\mathcal{T}, \mathcal{F} \subset \mathcal{A}$. $(\mathcal{T}, \mathcal{F})$ is called a torsion pair in \mathcal{A} if • $\mathcal{F} = \mathcal{T}^{\perp} := \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(\mathcal{T}, X) = 0\},$ • $\mathcal{T} = {}^{\perp}\mathcal{F} := \{X \in \mathcal{A} \mid \operatorname{Hom}_{\mathcal{A}}(X, \mathcal{F}) = 0\}.$

Or equivalently,

- $\operatorname{Hom}_{\mathcal{A}}(\mathcal{T},\mathcal{F}) = 0$,
- $\forall X \in \mathcal{A}, \exists (0 \to X' \to X \to X'' \to 0)$: exact, $X' \in \mathcal{T}, X'' \in \mathcal{F}.$

Lattice of torsion classes

Definition

$$\begin{split} \mathcal{T} \subset \mathcal{A} \text{: torsion class} : \Longleftrightarrow \ (\mathcal{T}, \mathcal{T}^{\perp}) \text{: torsion pair} \\ \Longleftrightarrow \ \mathcal{T} \text{ is closed under factor obj's, extensions} \end{split}$$

- tors $\mathcal{A} := \{ all \text{ torsion classes in } \mathcal{A} \}: poset by \subset$.
- For any X ⊂ A, there exists
 T(X) := (the smallest torsion class containing X).

Proposition

tors $\ensuremath{\mathcal{R}}$ is a complete lattice with meets and joins

$$\bigwedge_{\mathcal{T}\in S}\mathcal{T}=\bigcap_{\mathcal{T}\in S}\mathcal{T},\quad\bigvee_{\mathcal{T}\in S}\mathcal{T}=\mathsf{T}\left(\bigcup_{\mathcal{T}\in S}\mathcal{T}\right)\quad(S\subset\operatorname{tors}\mathcal{A}).$$

Wide intervals

For intervals $[\mathcal{U}, \mathcal{T}]$ in tors \mathcal{A} (with $\mathcal{U} \subset \mathcal{T}$), $\mathcal{U}^{\perp} \cap \mathcal{T}$ gives the "difference" of \mathcal{U} and \mathcal{T} . Today, we deal with the following nice intervals.

Definition [AP]

An interval $[\mathcal{U}, \mathcal{T}]$ in tors \mathcal{A} is called a wide interval if $\mathcal{U}^{\perp} \cap \mathcal{T}$ is a wide subcategory of \mathcal{A} .

$\mathcal{W} \subset \mathcal{A}$ is called a wide subcategory if

 ${\mathcal W}$ is closed under kernels, cokernels, extensions.

- A wide subcat. ${\mathcal W}$ is an abelian length category.
- There exists a bij. {wide subcat.} \leftrightarrow {semibricks}.
 - a semibrick = a set of pairwise Hom-orthogonal bricks.

Brick labeling

Two torsion classes $\mathcal{U} \subset \mathcal{T}$ are said to be adjacent if $\mathcal{U} \neq \mathcal{T}$ and $\nexists \mathcal{V} \in \text{tors } \mathcal{A}, \mathcal{U} \subsetneq \mathcal{V} \subsetneq \mathcal{T}$.

Definition

The Hasse quiver of tors \mathcal{R} is defined as follows.

- The vertices are the elements of tors \mathcal{A} .
- Write an arrow $\mathcal{T} \to \mathcal{U}$ if $\mathcal{U} \subsetneq \mathcal{T}$ are adjacent.

Proposition [Demonet–Iyama–Reading–Reiten–Thomas] For any arrow $q: \mathcal{T} \to \mathcal{U}$, $[\mathcal{U}, \mathcal{T}]$ is a wide interval, and $\mathcal{W} := \mathcal{U}^{\perp} \cap \mathcal{T}$ has a unique simple object S_q , so we label $q: \mathcal{T} \to \mathcal{U}$ by the brick S_q .

τ -tilting reduction

Let *A* be a fin. dim. alg. over a field *K*, and $\mathcal{A} = \text{mod } A$. For $N \in \text{mod } A$ and $Q \in \text{proj } A$, (N, Q) is a τ -rigid pair if $\text{Hom}_A(N, \tau N) = 0$ and $\text{Hom}_A(Q, N) = 0$.

Theorem [Jasso, DIRRT] For a τ -rigid pair (N, Q), set

$$\mathcal{U} := \operatorname{Fac} N, \quad \mathcal{T} := N^{\perp} \cap {}^{\perp}(\tau N) \cap Q^{\perp}.$$

(1) [U, T] is a wide interval (W := U[⊥] ∩ T is wide).
(2) [U, T] ≅ tors W as complete lattices, where V ↦ U[⊥] ∩ V, T(U ∪ X) ↔ X.
(3) The bijections in (2) preserve brick labeling.
W ≅ mod C for some fin. dim. alg C.

Main result

Theorem 1 [AP]

Let $[\mathcal{U}, \mathcal{T}]$ be a wide interval in tors $\mathcal{A}, \mathcal{W} := \mathcal{U}^{\perp} \cap \mathcal{T}$. (1) $[\mathcal{U}, \mathcal{T}] \cong \text{tors } \mathcal{W}$ as complete lattices, where $\mathcal{V} \mapsto \mathcal{U}^{\perp} \cap \mathcal{V} =: \Phi(V),$

 $\Phi^{-1}(\mathcal{X}) = \mathsf{T}(\mathcal{U} \cup \mathcal{X}) \longleftrightarrow \mathcal{X}.$

- (2) The bijection Φ preserves brick labeling: the label of V₁ → V₂ is the label of Φ(V₁) → Φ(V₂).
 (2) The following sets activities
- (3) The following sets coincide:
 - (a) The set of the labels of the arrows from \mathcal{T} in $[\mathcal{U}, \mathcal{T}]$.
 - (b) The set of the labels of the arrows to \mathcal{U} in $[\mathcal{U}, \mathcal{T}]$.
 - (c) The set of the simple objects of \mathcal{W} .

"Not τ -tilting" example

Let $K = \overline{K}$, $A = K(1 \Rightarrow 2)$ and $\mathcal{A} = \text{mod } A$. We set $\mathcal{U}, \mathcal{T} \in \text{tors } \mathcal{A}$ by

- $\mathcal{U} := \text{add}\{\text{all preinjective modules}\},\$
- $\mathcal{T} := \text{add}\{\text{all regular, preinjective modules}\}.$ Then, $[\mathcal{U}, \mathcal{T}]$ is a wide interval with

$$\mathcal{W} = \operatorname{add}\{\operatorname{all regular modules}\}$$

$$= \operatorname{Filt}\{M_{\lambda} \mid \lambda \in \mathbb{P}^{1}(K)\}$$
$$\left(M_{\lambda} := K \xrightarrow{a}_{b} K \ (\lambda = (a : b) \in \mathbb{P}^{1}(K))\right)$$
$$= \bigoplus_{\lambda \in \mathbb{P}^{1}(K)} \operatorname{Filt} M_{\lambda}.$$

"Not τ -tilting" example

 $[\mathcal{U}, \mathcal{T}] \text{ is a wide interval with} \\ \mathcal{W} = \bigoplus_{\lambda \in \mathbb{P}^{1}(K)} \operatorname{Filt} M_{\lambda}.$ Since $\operatorname{tors}(\operatorname{Filt} M_{\lambda}) = \{\operatorname{Filt} M_{\lambda}, \{0\}\},$ $[\mathcal{U}, \mathcal{T}] \cong \operatorname{tors} \mathcal{W} \cong \prod_{\lambda \in \mathbb{P}^{1}(K)} \operatorname{tors}(\operatorname{Filt} M_{\lambda}) \cong 2^{\mathbb{P}^{1}(K)}.$

For $X \in 2^{\mathbb{P}^{1}(K)}$, the associated torsion class in $[\mathcal{U}, \mathcal{T}]$ is $\mathcal{V}_{X} := \mathsf{T}(\mathcal{U} \cup \{M_{\lambda} \mid \lambda \in X\}) \in [\mathcal{U}, \mathcal{T}].$ Any arrow in $[\mathcal{U}, \mathcal{T}]$ is of the form

 $\mathcal{V}_{X\cup\{\lambda\}} \xrightarrow{\text{label: } M_{\lambda}} \mathcal{V}_X \quad (X \in 2^{\mathbb{P}^1(K)}, \ \lambda \in \mathbb{P}^1(K) \setminus X).$

Characterization of wide intervals (1)

For any interval $[\mathcal{U}, \mathcal{T}]$ in tors \mathcal{A} , we set

 $[\mathcal{U},\mathcal{T}]^+ := \{\mathcal{T}\} \cup \{\mathcal{V} \in [\mathcal{U},\mathcal{T}] \mid \exists (\mathcal{T} \to \mathcal{V}): \text{ arrow}\},\$

 $[\mathcal{U},\mathcal{T}]^{-} := \{\mathcal{U}\} \cup \{\mathcal{V} \in [\mathcal{U},\mathcal{T}] \mid \exists (\mathcal{V} \to \mathcal{U}): \text{ arrow} \}.$

Theorem 2 [AP]

For any interval $[\mathcal{U}, \mathcal{T}]$ in tors \mathcal{A} , TFAE.

(a) $[\mathcal{U}, \mathcal{T}]$ is a wide interval.

(b) $[\mathcal{U}, \mathcal{T}]$ is a join interval, i.e. $\mathcal{T} = \bigvee_{\mathcal{V} \in [\mathcal{U}, \mathcal{T}]^{-}} \mathcal{V}$.

(c) $[\mathcal{U}, \mathcal{T}]$ is a meet interval, i.e. $\mathcal{U} = \bigwedge_{\mathcal{V} \in [\mathcal{U}, \mathcal{T}]^+} \mathcal{V}$.

Characterization of wide intervals (2)

Question

How many wide intervals $[\mathcal{U}, \mathcal{T}]$ exist for $\mathcal{T} \in \text{tors } \mathcal{R}$?

Theorem 3 [AP]

Fix $\mathcal{T} \in \text{tors } \mathcal{A} \text{ and } \mathcal{L} := \{ \text{all labels of arrows from } \mathcal{T} \}.$

(1) \mathcal{L} is a semibrick with Filt $\mathcal{L} = \alpha(\mathcal{T})$, where

$$\alpha(\mathcal{T}) := \{ X \in \mathcal{T} \mid \forall Y \in \mathcal{T}, \forall f \colon Y \to X, \mathsf{Ker} f \in \mathcal{T} \}.$$

(2) There exists a bijection

 $2^{\mathcal{L}} \to \{\mathcal{U} \in \text{tors } \mathcal{A} \mid [\mathcal{U}, \mathcal{T}]: \text{ wide interval}\}$ $\mathcal{S} \mapsto \mathcal{T} \cap {}^{\perp}\mathcal{S} =: \mathcal{U}_{\mathcal{S}}$

and $(\mathcal{U}_{\mathcal{S}})^{\perp} \cap \mathcal{T} = \operatorname{Filt} \mathcal{S} \subset \alpha(\mathcal{T})$: Serre.

Widely generated torsion classes

Theorem [Marks–Šťovíček]

If \mathcal{W} is a wide subcategory of \mathcal{A} , then $\alpha(\mathsf{T}(\mathcal{W})) = \mathcal{W}$.

Corollary [AP] (cf. [Barnard–Carroll–Zhu]) For $\mathcal{T} \in \text{tors } \mathcal{A}$, TFAE.

- (a) $\exists \mathcal{W} \subset \mathcal{A}$: a wide subcat., $\mathcal{T} = T(\mathcal{W})$ (widely generated torsion classes).
- (b) $\mathcal{T} = \mathsf{T}(\alpha(\mathcal{T})).$
- (c) $\mathcal{T} = T(\{\text{all labels of arrows from } \mathcal{T}\}).$
- (d) $\forall \mathcal{U} \subsetneq \mathcal{T}, \exists (\mathcal{T} \to \mathcal{U}'): \text{ arrow}, \mathcal{U} \subset \mathcal{U}'.$

Thank you for your attention.