g-polytopes of Brauer graph algebras

Toshitaka Aoki

Graduate School of Mathematics, Nagoya University

August 27, 2019
Aim of this talk

- To introduce the \textit{g-polytopes} of f.d. algebras, firstly studied by [Asashiba-Mizuno-Nakashima (2019)]
 - cones of \textit{g-vectors}
 - simplicial complexes of two-term silting complexes
 - lattice polytopes

- Convexity and symmetry of (the closure of) \textit{g-polytopes} of Brauer graph algebras.

\begin{itemize}
\item \includegraphics[width=0.2\textwidth]{image1.png}
\item \includegraphics[width=0.2\textwidth]{image2.png}
\item \includegraphics[width=0.2\textwidth]{image3.png}
\item \includegraphics[width=0.2\textwidth]{image4.png}
\end{itemize}
Motivation: idea of L. Hille

Q: an acyclic quiver with vertices 1, ..., n. $k = \overline{k}$: a field.

In [Hille (2006, 2015)], he studied a simplicial complex of tilting modules over kQ as

$$
\bigcup_{M} C(M) \subseteq \mathbb{R}^n,
$$

where

- $M = \bigoplus_{i=1}^{n} M_i$ runs over all f. g. tilting kQ-modules,
- $C(M) := \{ \sum_{i=1}^{n} a_i \dim M_i \mid a_i \in \mathbb{R}_{\geq 0} \}$

Toshitaka Aoki (Nagoya University)
Motivation: idea of L. Hille

Q: an acyclic quiver with vertices $1, \ldots, n$. $k = \overline{k}$: a field.

In [Hille (2006, 2015)], he studied a simplicial complex of tilting modules over kQ as

$$
\bigcup_{M} C_{\leq 1}(M) \subseteq \mathbb{R}^n,
$$

where

- $M = \bigoplus_{i=1}^{n} M_i$ runs over all f. g. tilting kQ-modules,
- $C_{\leq 1}(M) := \left\{ \sum_{i=1}^{n} a_i \text{dim} M_i \mid a_i \in \mathbb{R}_{\geq 0}, \sum_{i=1}^{n} a_i \leq 1 \right\} = \text{conv}\{0, \text{dim} M_i \mid 1 \leq i \leq n\}.$
$\bigcup_{M} C_{\leq 1}(M)$

$Q_1 : 1 \rightarrow 2 \quad \bullet = \text{indec. rigid module}$
$U_M C_{\leq 1}(M)$

$Q_1 : 1 \rightarrow 2$

$Q_2 : 1 \rightsquigarrow 2$
\[\bigcup_{M} C_{\leq 1}(M) \]

\[Q_1 : 1 \rightarrow 2 \quad Q_2 : 1 \leftrightarrow 2 \quad Q_3 : 1 \leftrightarrow 2 \]
Motivation: L. Hille’s idea

Theorem [Hille (2015)]

If Q is of Dynkin type \mathbb{A}, then $\bigcup_M C_{\leq 1}(M)$ is convex.

In this case, we have

$$\bigcup_M C_{\leq 1}(M) = \text{conv} \{0, \dim X \mid X: \text{indec. } kQ\text{-module}\}$$

$$= \text{conv}(\{e_i\}_{i=1}^n \cup \{e_i + \cdots + e_j \mid 1 \leq i < j \leq n\} \cup \{0\})$$

and it does not depend on the orientation of Q.

For type \mathbb{D} and \mathbb{E}, $\bigcup_M C_{\leq 1}(M)$ is non-convex.
Motivation: L. Hille’s idea

Theorem [Hille (2015)]

If Q is of Dynkin type \mathbb{A}, then $\bigcup_M C_{\leq 1}(M)$ is convex.

In this case, we have

\[
\bigcup_M C_{\leq 1}(M) = \text{conv}\{0, \dim X \mid X: \text{indec. } kQ\text{-module}\}
\]

\[
= \text{conv}(\{e_i\}_{i=1}^n \cup \{e_i + \cdots + e_j \mid 1 \leq i < j \leq n\} \cup \{0\})
\]

and it does not depend on the orientation of Q.

For type \mathbb{D} and \mathbb{E}, $\bigcup_M C_{\leq 1}(M)$ is non-convex.
Let $M = \bigoplus_{i=1}^{n} M_i$ be a tilting kQ-module and

$$0 \rightarrow M_i \xrightarrow{f} \bigoplus_{\lambda \in \Lambda} X_\lambda \rightarrow M'_i \rightarrow 0 \quad (X_\lambda : indec.)$$

where f is a left minimal $\text{add}(M/M_i)$-apx. of M. $N := M/M_i \oplus M'_i$ is called mutation of M if it is tilting.

Lemma

In the above, the following hold:

1. $C_{\leq 1}(M)$, $C_{\leq 1}(N)$ intersect only at their boundary.
2. If $\#\Lambda \leq 2$, then $C_{\leq 1}(M) \cup C_{\leq 1}(N)$ is convex.
3. If Q is of type \mathbb{A}, then $\#\Lambda \leq 2$ is always satisfied.
This talk

<table>
<thead>
<tr>
<th>Object</th>
<th>[H]</th>
<th>this talk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical data</td>
<td>tilting module</td>
<td>2-term silting cpx.</td>
</tr>
<tr>
<td>Cones</td>
<td>dim. vector</td>
<td>g-vector</td>
</tr>
<tr>
<td>Polytope</td>
<td>$C(M)$</td>
<td>$C(T)$</td>
</tr>
<tr>
<td>Intersection</td>
<td>$\bigcup_{M} C_{\leq 1}(M)$</td>
<td>$\bigcup_{T} C_{\leq 1}(T)$</td>
</tr>
<tr>
<td>Locally convexity</td>
<td>the middle term of mutation seq.</td>
<td>defined similarly</td>
</tr>
</tbody>
</table>

Toshitaka Aoki (Nagoya University) g-polytopes of Brauer graph algebras August 27, 2019 7 / 21
\begin{itemize}
 \item A: a finite dimensional k-algebra
 \item $P(1), \ldots, P(n)$: indecomposable projective A-modules
\end{itemize}

Due to [Asashiba-Mizuno-Nakashima (2019)], we define the following subset $\Delta(A)$ of \mathbb{R}^n, which we call \textit{g-polytope} of A:

$$
\Delta(A) := \bigcup_{T} C_{\leq 1}(T) \subseteq \mathbb{R}^n, \text{ where }
$$

$T = \bigoplus_{i=1}^{n} T_i$ runs over all two-term silting complexes

$C_{\leq 1}(T) := \{ \sum_{i=1}^{n} a_i g^{T_i} \mid a_i \in \mathbb{R}_{\geq 0}, \sum_{i=1}^{n} a_i \leq 1\}$

For a two-term complex $T = (T^{-1} \to T^0) \in K^b(\text{proj}A)$,

$g^T := (m_1 - m'_1, \ldots, m_n - m'_n) \in \mathbb{Z}^n$: the g-vector of T,

where $T^0 \cong \bigoplus_{i=1}^{n} P(i)^{m_i}$ and $T^{-1} \cong \bigoplus_{i=1}^{n} P(i)^{m'_i}$.
Silting mutation

Let $T = \bigoplus_{i=1}^{n} T_i$ be a two-term silting complex for A and

$$T_i \xrightarrow{f} \bigoplus_{\lambda \in \Lambda} X_{\lambda} \longrightarrow T'_i \rightarrow T_i[1], \quad (X_{\lambda} : indec) \quad (*)$$

where f is a minimal left $\text{add}(T/T_i)$-apx. of T_i. Then $U := T/T_i \oplus T'_i$ is again a silting complex, and is called a two-term silting mutation of T if it is two-term.

Lemma (analogues of tilting modules)

In the above, the following hold:

1. $C_{\leq 1}(T), C_{\leq 1}(U)$ intersect only at their boundary.
2. If $\# \Lambda \leq 2$, then $C_{\leq 1}(T) \cup C_{\leq 1}(U)$ is convex.
Definition

We say that A is *locally convex* if $\#\Lambda \leq 2$ in (\ast) always satisfied for any two-term silting complex T and any two-term silting mutation of T.

Theorem [Asashiba-Mizuno-Nakashima (2019)]

Assume that

$$\#\{\text{basic two-term silting complexes for } A\}/_{\text{isom}} < \infty.$$

Then the following conditions are equivalent:

1. A is locally convex.
2. $\Delta(A)$ is convex.

In this case, $\Delta(A) = \text{conv}\{g^X | X: \text{indecomposable two-term presilt.}\}$.
Definition

We say that A is *locally convex* if $\#\Lambda \leq 2$ in (\ast) always satisfied for any two-term silting complex T and any two-term silting mutation of T.

Theorem [Asashiba-Mizuno-Nakashima (2019)]

Assume that

$$\#\{\text{basic two-term silting complexes for } A\}/\text{isom} < \infty.$$

Then the following conditions are equivalent:

(1) A is locally convex.

(2) $\Delta(A)$ is convex.

In this case, $\Delta(A) = \text{conv}\{g^X | X : \text{indec. two-term presilt.}\}$
Brauer tree algebras are f.d. symmetric algebras defined by Brauer trees (= trees embedded in a disk).

- containing the trivial extension of path algebras of type \tilde{A}
- closed under derived equivalent
- $\# \{ \text{basic two-term silting complexes for } A \} / \text{isom} < \infty$
Theorem [Asashiba-Mizuno-Nakashima (2019)]

Let A_G be a Brauer tree algebra associated to a Brauer tree G. Then the following hold:

1. $\Delta(A_G)$ is convex.
2. $\Delta(A_G)$ is symmetric with respect to origin (i.e. $\Delta(A_G) = -\Delta(A_G)$).

Corollary

For Brauer tree algebras, the g-polytope provides a derived invariant in the sense that

$$A_G \sim_{\text{der}} A_{G'} \implies \Delta(A_G) \cong_{\text{SL}} \Delta(A_{G'})$$

$$\mathcal{M}_{A_n} := \text{conv}(\{\pm e_i\}_{i=1}^n \cup \{\pm (e_i + \cdots + e_j) | 1 \leq i < j \leq n\})$$
Theorem [Asashiba-Mizuno-Nakashima (2019)]

Let A_G be a Brauer tree algebra associated to a Brauer tree G. Then the following hold:

1. $\Delta(A_G)$ is convex.
2. $\Delta(A_G)$ is symmetric with respect to origin (i.e. $\Delta(A_G) = -\Delta(A_G)$).

Corollary

For Brauer tree algebras, the g-polytope provides a derived invariant in the sense that

$$A_G \underset{\text{der}}{\sim} A_{G'} \implies \Delta(A_G) \underset{\text{SL}}{\cong} \Delta(A_{G'})$$

$$\mathcal{M}_{A_n} := \text{conv}\left(\{\pm e_i\}_{i=1}^n \cup \{\pm (e_i + \cdots + e_j) \mid 1 \leq i < j \leq n\}\right)$$
Theorem [Asashiba-Mizuno-Nakashima (2019)]

Let A_G be a Brauer tree algebra associated to a Brauer tree G. Then the following hold:

1. $\Delta(A_G)$ is convex.
2. $\Delta(A_G)$ is symmetric with respect to origin (i.e. $\Delta(A_G) = -\Delta(A_G)$).

Corollary

For Brauer tree algebras, the g-polytope provides a derived invariant in the sense that

$$A_G \sim_{\text{der}} A_{G'} \implies \Delta(A_G) \cong_{\text{SL}} \Delta(A_{G'}) \cong_{\text{SL}} M_{A_n}$$

$$M_{A_n} := \text{conv}(\{\pm e_i\}_{i=1}^n \cup \{\pm (e_i + \cdots + e_j) \mid 1 \leq i < j \leq n\})$$
$n=2$

$G_1 : \bullet --- \bullet --- \bullet$

$A_{G_1} \cong$ the trivial extension of $k(1 \to 2)$
$n=3$

$G_2 : \bullet \overrightarrow{\bullet} \overrightarrow{\bullet} \overrightarrow{\bullet} \overrightarrow{\bullet}$ \hspace{2cm} $G_3 : \bullet \overrightarrow{\bullet} \overrightarrow{\bullet} \overrightarrow{\bullet}$

$A_{G_2} \cong \text{Triv}(k(1 \rightarrow 2 \leftarrow 3))$ \hspace{1cm} $A_{G_3} \cong \text{Triv}(k(1 \rightarrow 2 \rightarrow 3))$
Main Result
Main Result

Brauer graph algebras are defined from ribbon graphs (undirected graphs embedded in surfaces).

- a generalization of Brauer tree algebras
- symmetric special biserial algebras (hence, tame-representation type)
- infinitely many two-term silting complexes in general
Main Result

Proposition

Let A_G be a Brauer graph algebra associated to a ribbon graph G. Then A_G is locally convex.

It does not imply the convexity of $\Delta(A_G)$, but
Main Result

Proposition

Let A_G be a Brauer graph algebra associated to a ribbon graph G. Then A_G is locally convex.

It does not imply the convexity of $\Delta(A_G)$, but
Main Result

Theorem (A)

Let A_G be a Brauer graph algebra associated to a ribbon graph G. Then the following hold:

1. $\Delta(A_G)$ is convex.
2. $\Delta(A_G)$ is symmetric with respect to origin.

Corollary

For Brauer graph algebras, the closure of the g-polytope is invariant under iterated tilting mutation (\Leftrightarrow flip of ribbon graphs).
Main Result

Theorem (A)

Let A_G be a Brauer graph algebra associated to a ribbon graph G. Then the following hold:

1. $\Delta(A_G)$ is convex.
2. $\Delta(A_G)$ is symmetric with respect to origin.

Corollary

For Brauer graph algebras, the closure of the g-polytope is invariant under iterated tilting mutation (\Leftrightarrow flip of ribbon graphs).
The closure $\overline{\Delta(A_{G_1})}$ is given by a rectangular area.
The outline of $\Delta(A_{G_2})$ is a tube of a hexagon.
A proof is given by a geometric (combinatorial) approach due to [Adachi-Aihara-Chan (2014)]:

- Determine all lattice points of $\Delta(A_G)$ combinatorially
- Taking the closure is essentially needed
- The density of cones of g-vectors plays an important role

An explicit description of the closure of g-polytope
References

Thank you for your attention!!