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On balanced Auslander–Dlab–Ringel algebras

Takahide Adachi, Aaron Chan and Mayu Tsukamoto

Osaka Prefecture University, Nagoya University and Yamaguchi University

Email: adachi@mi.s.osakafu-u.ac.jp, aaron.kychan@gmail.com, tsukamot@yamaguchi-u.ac.jp

Many algebras that appear in representation theory and algebraic geometry often fall
into the following two classes at the same time. One is the class of Koszul algebras
introduced by Priddy [6], and the other is the class of quasi-hereditary algebras introduced
by Cline, Parshall, and Scott [3]. These two classes of algebras exhibit two different forms
of dualities - the Koszul duality [2] and the Ringel duality [7]. One sufficient condition for
the two dualities of a Koszul quasi-hereditary algebra to commute is given by Mazorchuk
[5], and an algebra that satisfies such a condition is called a balanced algebra nowadays.
In ring theory, one interesting class of quasi-hereditary algebras is given by theAuslander–

Dlab–Ringel algebras. The class was first studied by Auslander in [1] and subsequently by
Dlab and Ringel in [4] to give a construction of algebras with finite global dimensions.
In this talk, we will explain in slightly more details about the aforementioned classes

of algebras, and will give a sufficient condition for Auslander–Dlab–Ringel algebras to be
balanced.

References
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4. V. Dlab, C. M. Ringel, Every semiprimary ring is the endomorphism ring of a projective module over

a quasi-hereditary ring, Proc. Amer. Math. Soc. 107 (1989), no. 1, 1–5.
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On the weakly Iwanaga–Gorenstein property of gendo algebras

Takuma Aihara, Aaron Chan and Takahiro Honma

Tokyo Gakugei University, Nagoya University, Tokyo University of Science

Email: aihara@u-gakugei.ac.jp, aaron.kychan@gmail.com, 1119704@ed.tus.ac.jp

We explore the subject on the weakly Iwanaga–Gorenstein (abbr. IG) property of gendo
algebras. Here, a gendo algebra means the ENDOmorphism algebra of a Generator [FK],
which often has nice homological properties. From the Morita theoretic viewpoint, the
endomorphism algebra of a progenerator admits the same module category as the original
algebra. Auslander introduced the notion of representation dimensions and Auslander
algebras, which are defined using gendo algebras. As is well-known, they give excelent
relationships between representation theoretic properties and homological properties.

The notion of weakly IG algebras was introduced by Ringel–Zhang [RZ]. We say that
a finite dimensional algebra over a field is right IG if the category of Cohen–Macaulay
modules is Frobenius; hence the stable category admits a triangulated category structure.
Dually, we define left IG algebras. A weakly IG algebra is defined to be right and left
IG. For examle, an algebra with finite left selfinjective dimension is right IG, so an IG
algebra, which has finite left and right selfinjective dimension, is wealy IG. Note that we
do not know if a right IG algebra is left IG, and vice versa. The aim of this talk is to
construct weakly IG algebras. Here is a main result.

Theorem 1. Let Λ be a finite dimensional algebra over a field and M a finite dimensional
right Λ-module. If Λ is representation-finite, then the gendo algebra EndΛ(Λ⊕M) is wealy
IG with finite CM representation type.

References

[FK] M. Fang and S. Koenig, Gendo-symmetric algebras, canonical comultiplication, bar cocomplex
and dominant dimension. Trans. Amer. Math. Soc. 368 (2016), no. 7, 5037–5055.

[RZ] C. M. Ringel and P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules.
arXiv: 1808.01809.

2010 Mathematics Subject Classification. 16E65, 16G50.
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g-polytopes of Brauer graph algebras

Toshitaka Aoki

Nagoya University

Email: m15001d@math.nagoya-u.ac.jp

Inspired by a work of Hille [2], Asashiba-Mizuno-Nakashima [1] studied simplicial com-
plexes of two-term tilting complexes over finite dimensional symmetric algebras A. For
0 ≤ j ≤ n−1, the set of j-dimensional faces consists of the set of g-vectors {gT1 , . . . , gTj+1}
for basic two-term pretilting complexes T =

⊕j+1
i=1 Ti having j + 1 indecomposable direct

summands, where n is the number of simple modules of A. The g-polytope ∆(A) of A is
given by (n− 1)-dimensional faces

∆(A) :=
∪

T∈2-tiltA

C≤1(T ) ⊆ Rn,

where C≤1(T ) is the convex hull of n+1 vectors 0, gT1 , . . . , gTn for a basic two-term tilting
complex T =

⊕n
i=1 Ti. Note that the g-polytope can be regarded as a truncated version

of g-vector cones since we have C≤1(T ) = {
∑n

i=1 aig
Ti | 0 ≤ ai ≤ 1 for all i = 1 . . . , n}.

Due to the result of [1], the convexity and symmetry of g-polytopes are quite interesting
in tilting mutation theory. One of their aims is to introduce the g-polytope as a new
derived invariant of Brauer tree algebras. Note that Brauer tree algebras are τ -tilting-
finite symmetric algebras, namely, having only finitely many isomorphism classes of basic
two-term tilting complexes.

Theorem 1. [2] Let G be a Brauer tree and AG the associated Brauer tree algebra. Then
∆(AG) is convex and satisfies ∆(AG) = −∆(AG). Therefore, if two Brauer tree algebras
AG and AG′ are derived equivalent, then we have ∆(AG) ∼= ∆(AG′).

An aim of this talk is to give a generalization for non-τ -tilting-finite symmetric algebras.
In this case, we mainly study the closure ∆(A) rather than ∆(A) itself. Finally, we
conclude that the closure of g-polytopes of Brauer graph algebras is invariant under
iterated mutation.

Proposition 2. Let A be a symmetric algebra. If any algebra B obtained by iterated
mutation from A satisfies ∆(B) = −∆(B), then we have ∆(A) ∼= ∆(B).

Theorem 3. Let G be a Brauer graph and AG the associated Brauer graph algebra. Then
∆(AG) is convex and satisfies ∆(AG) = −∆(AG). Therefore, if two Brauer graph algebras
AG and AG′ are obtained by iterated mutation each other, then we have ∆(AG) ∼= ∆(AG′).

Furthermore, we determine all integral lattice points of ∆(AG). We use a geometric
model of a classification of two-term tilting complexes over Brauer graph algebras estab-
lished by Adachi-Aihara-Chan.

References

1. H. Asashiba, Y. Mizuno, and K. Nakashima, Simplicial complexes and tilting theory for Brauer tree
algebras, ArXiv:1902.08774v1 (2019).

2. L. Hille, Tilting modules over the path algebra of type A, polytopes, and Catalan numbers, Amer. Math.
Soc., Providence, RI, 652 (2015), 91–101.
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On cyclotomic quiver Hecke algebras of affine type

Susumu Ariki

Osaka University

Email: ariki@ist.osaka-u.ac.jp

We recall Fock representations over affine Lie algebras, which arose from the soliton
theory, and categorification of integrable highest weight modules via cyclotomic quiver
Hecke algebras. Then, I explain graded dimension formulas for the idempotent truncation
of the cyclotomic quiver Hecke algebras, the Chuang-Rouquier derived equivalence and
the Brundan-Kleshchev isomorphism theorem. In the last part, I explain two applications
briefly. One is the classification of tame block algebras of Hecke algebras of classical type,
the other is Specht module theory for affine type C. The latter is joint work with Euiyong
Park and Liron Speyer.
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WIDE SUBCATEGORIES AND
LATTICES OF TORSION CLASSES

Sota Asai

Research Insitute for Mathematical Sciences, Kyoto University

Email: asaisota@kurims.kyoto-u.ac.jp

This talk is based on joint work [1] with Calvin Pfeifer (Bonn).
Let A be a fixed essentially small abelian length category. A pair (T ,F) of full sub-

categories T ,F ⊂ A is called a torsion pair if

F = T ⊥ = {X ∈ A | HomA(T , X) = 0},
T = ⊥F = {X ∈ A | HomA(X,F) = 0}.

One can show that a full subcategory T ⊂ A is completed to a torsion pair (T , T ⊥) if
and only if T is closed under extensions and factor objects. We call such subcategories T
torsion classes in A, and then, the set torsA partially ordered by inclusion is a complete
lattice, that is, meets and joins are well-defined for all subsets of torsA.
For two torsion classes U ⊂ T in A, we can consider the interval [U , T ] in torsA and

a full subcategory W := U⊥ ∩ T . The full subcategory W indicates the difference of the
torsion classes U ⊂ T ; more precisely,

T = U ∗W := {X ∈ A | there exists 0 → U → X → W → 0 with U ∈ U and W ∈ W}.
We call [U , T ] a wide interval if W is a wide subcategory, that is, W is closed under

taking kernels, cokernels, and extensions. In this case, W is an abelian subcategory of A
closed under extensions, so we have another complete lattice torsW .
A typical example of wide intervals is given by τ -tilting reduction established by Jasso [3]

and Demonet–Iyama–Reading–Reiten–Thomas [2]; namely, let A be a finite-dimensional
algebra over a field K, then a τ -rigid pair (N,Q) in the module category modA gives a
wide interval [FacN, ⊥(τN)∩Q⊥]. They showed that the wide interval [FacN, ⊥(τN)∩Q⊥]
is isomorphic to torsCN,Q as a complete lattice, where CN,Q is a certain finite-dimensional
K-algebra constructed from the τ -rigid pair (N,Q).
In our study, we were able to extend their result to all wide intervals.

Theorem 1. Let [U , T ] be a wide interval in torsA and W := U⊥ ∩ T . Then we have
mutually inverse isomorphisms of complete lattices

Φ: [U , T ] → torsW , Ψ: torsW → [U , T ]

given by Φ(V) := U⊥ ∩ V and Ψ(X ) := U ∗ X for any V ∈ [U , T ] and any X ∈ torsW.

In this talk, I would like to explain the detail of the theorem above. If time permits, I
will give several characterizations of wide intervals obtained in our study.
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2-categorical Cohen-Montgomery duality between categories
with I-pseudo-actions and I-graded categories for a small

category I

Hideto Asashiba

Shizuoka University

Email: asashiba.hideto@shizuoka.ac.jp

Throughout this talk k denotes a commutative ring. We first note that a group
pseudo-action of a group G on a category C defined by Deligne [2] and Drinfeld–Gelaki–
Nikshych–Ostrik [3] is nothing but a pseudofunctor from G as a groupoid with a single
object ∗ to the 2-category CAT of categories sending ∗ to C. Thus if C is a small k-
category, then it is just a pseudofunctor X : G → k-Cat with X(∗) = C, where k-Cat
is the 2-category of small k-categories. We denote by G-Cat the 2-category of small
k-categories with G-pseudo-actions, and by G-GrCat the 2-category of small G-graded
k-categories. By generalizing the main result in [1] it is possible to show that a 2-functor
?/G : G-Cat → G-GrCat defined by extending the orbit category construction is a 2-
equivalence with a 2-quasi-inverse ?#G : G-GrCat → G-Cat defined by extending the
smash product. By replacing the group G by a small category I we extend this result.
Denote by Pfun(I, k-Cat) the 2-category of pseudofunctors I → k-Cat, and by I-GrCat
the 2-category of small I-graded k-categories. Then we can generalize the Grothendieck
construction to a 2-functor

∫
I
: Pfun(I, k-Cat) → I-GrCat and define the smash product

2-functor ?#I : I-GrCat → Pfun(I, k-Cat) in such a way that they are 2-quasi-inverses
to each other. Of course, if I = G then we have

∫
I
=?/G and ?#I =?#G.
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ON TWO SIDED HARADA RINGS AND QF RINGS

Yoshitomo Baba

Osaka Kyoiku University

Email: ybaba@cc.osaka-kyoiku.ac.jp

Let R be a basic artinian ring, let {ei}ni=1 be a complete set of orthogonal primitive
idempotents of R and let {fi}ki=1 ⊆ {ei}ni=1. A sequence f1R, f2R, . . . , fkR is called a
right co-H-sequence of R if the following (CHS1), (CHS2), (CHS3) hold:

(CHS1) For each i = 1, 2, . . . , k−1, there exists an R-isomorphism ξi : fiRR → fi+1JR.
(CHS2) The last term fkRR is injective.
(CHS3) f1R, f2R, . . . , fkR is the longest sequence among the sequences which satisfy

(CHS1),(CHS2), i.e., there does not exist an R-isomorphism: fRR → f1JR,
where f ∈ {ei}ni=1.

And, we call an artinian ring R a left Harada ring if there exists a basic set {ei,j} m n(i)
i=1,j=1

of orthogonal primitive idempotents of R′ such that ei,n(i)R, ei,n(i)−1R, . . . , ei,1R is a right
co-H-sequence of R for all i = 1, 2, . . . ,m.
Left Harada ring is first studied by M. Harada in [1]. K. Oshiro further studied it and

called the ring a left Harada ring (abbreviated left H-ring) in [2]. Many results on one
sided Harada rings are given in [3].
In this talk, using a new concept “weak co-H-sequence”, we characterize two sided

Harada rings and give the relationship between two sided Harada rings and QF rings.
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Recollement of comodule categories over coalgebra objects

Aaron Chan

Nagoya University

Email: aaron.kychan@gmail.com

One approach [3] to categorify representation theory is to replace an algebra by certain
nice “additive 2-category” A, and finite dimensional modules by abelian categories (with
finitely many simples and consists only of finite length objects) that are equipped with
an action of A.

It turns out that the categorified version of an short exact sequence is equivalent to
specifying a recollement (L,M,N) of abelian categories.

It is well-known that if M in a recollement of abelian categories (as shown above) is a
module category, say mod(A), of an algebra A, then there will be an idempotent e of A
so that L ' mod(A/AeA) and N ' mod(eAe).

However, unlike the special case of A being a tensor category where A-modules can
take the form of module categories [1], we can only guarantee an A-module takes the
form of a comodule category comodA(C) over a coalgebra object C in the collection of
morphism categories of A [2]. In this talk, we explain the analogue of the characterisation
of recollements of module categories in this more general setting.

This is a joint work with Vanessa Miemietz (arXiv: 1901.04685).
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Unique Factorization property of non-UFDs

Gyu Whan Chang

Incheon National University

Email: whan@inu.ac.kr

A unique factorization domain (UFD) is an integral domain in which each nonzero
nonunit can be written uniquely as a finite product of irreducible elements, and in this
case, each irreducible element is a prime element. Let D be an integral domain and t be
the so-called t-operation on D. As in [1], D is called a weakly factorial domain (WFD) if
each nonzero nonunit of D can be written as a finite product of primary elements. Two
primary elements a, b of D will be said to be distinct if

√
aD 6=

√
bD. Let D be a WFD,

and note that if
x = x1 · · · xn = a1 · · · am

are two finite products of distinct primary elements of D, then n = m and xiD = aiD for
i = 1, . . . , n by reordering if necessary. Hence, each nonzero nonunit of a WFD can be
written uniquely as a finite product of distinct primary elements.

Following [5], we say that a nonzero nonunit x ∈ D is homogeneous if x is contained in
a unique maximal t-ideal of D. Then, in this talk, we will say that D is a homogeneous
factorization domain (HoFD) if each nonzero nonunit of D can be written as a finite
product of pairwise t-comaximal homogeneous elements. The notion of HoFDs was first
introduced in [2], where the authors called an HoFD a t-pure domain. Clearly, primary
elements are homogeneous. Thus, the notion of HoFDs is a natural generalization of
WFDs, and we have the following implications:

UFD ⇒ Weakly factorial GCD-domain ⇒ WFD ⇒ HoFD.

In this talk, we first show that the expression of an element of an HoFD is unique as in
the case of WFDs. Then, among other things, we show that (1) a PvMD D is an HoFD
if and only if D[X], the polynomial ring over D, is an HoFD and (2) D is a weakly Matlis
GCD-domain if and only if D[X] is an HoFD with t-Spec(D[X]) treed. We also study
the HoFD property of A + XB[X] constructions, pullbacks, and semigroup rings. This
talk is based on [3, 4].
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Generalized inverses and clean decompositions

Jianlong Chen

Southeast University

Email: jlchen@seu.edu.cn

Abstract: In this talk, we will give the relations between Drazin inverses (group
inverses) with clean decompositions. Furthermore, we get the relations between Moore-
Penrose inverses (core inverses, dual core inverses, pseudo core inverses) with ∗-clean
decompositions. The expressions of these generalized inverses by using the clean (∗-clean)
decompositions are given.
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The right core inverses of a product and a companion matrix

Xiaofeng Chen and Jianlong Chen

Southeast University

Email: xfc189130@163.com, jlchen@seu.edu.cn

Abstract: In this paper, characterizations of right core inverse by one-sided invert-
ibility are given. The necessary and sufficient conditions, which guarantee that paq have
right core inverses are investigated. Furthermore, characterizations of right core inverses
of triangular matrices, 2 × 2 matrices and a companion matrix are considered.
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3. J. L. Chen, H. H. Zhu, P. Patŕıcio, Y. L. Zhang, Characterizations and representations of core and

dual core inverses, Canad. Math. Bull. 60(2) (2017), 269–282.
4. M.P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436 (2012), 1909–1923.
5. M.P. Drazin, Left and right generalized inverses, Linear Algebra Appl. 510 (2016), 64–78.
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Functors between higher cluster categories of type A

Erik Darpö

Nagoya University

Email: darpo@math.nagoya-u.ac.jp

Isomorphism classes of indecomposable objects in the m-cluster category Cm(Al) of
type Al are in bijection with so-called m-diagonals in a polygon PN with N = m(l+1)+2
corners (Baur–Marsh 2008). When m/m′ = (l + 1)/(l′ + 1) ∈ N, this gives rise to an
injective map from the set of isomorphism classes of objects in Cm

′

(Al′) to the set of
isomorphism classes of objects in Cm(Al).
In the talk, we shall see that this embedding of objects comes from a functor between

the two cluster categories. While the functor in question is not full and faithful, it factors
as a full and faithful functor composed with a covering of Cm(Al).
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Recent Results in Clean Rings

Alexander J. Diesl

Wellesley College

Email: adiesl@wellesley.edu

A ring is called clean if every element can be written as the sum of a unit and an
idempotent, and a ring is called strongly clean if such a unit and idempotent can be
chosen so as to commute. Clean and strongly clean rings (and their variants) have been
an object of much study in recent years, and there are many interesting open questions.
In this talk, we will outline some recent work on the topic.
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On Enochs conjecture

Nanqing Ding

Department of Mathematics, Nanjing University, Nanjing 210093, China

E-mail:nqding@nju.edu.cn

Abstract

In the late 1990s, E. E. Enochs asked whether each covering class of modules is

closed under direct limits. This problem is still open in general. In this talk, a brief

introduction to Enochs conjecture will be given and some results on this subject will

be reviewed and discussed.

Key Words: Covering class; Direct limit; Coherent ring; Absolutely pure module.
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Questions and counterexamples on strongly clean rings

Thomas J. Dorsey

CCR-La Jolla

Email: thomasjdorsey@gmail.com

Recall that an element of a ring is said to be strongly clean if it can be written as
the sum of an idempotent and a unit that commute. The behavior of strong cleanness
with respect to power series rings (and, more generally, rings complete with respect to an
ideal) has been studied by many authors over the past 15 years or so. We will present
a counterexample about strongly clean elements in power series rings, and present some
related open questions.
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TRIANGULARIZATION OF MATRICES AND POLYNOMIAL MAPS
Xiankun Du

School of Mathematics, Jilin University
Email: duxk@jlu.edu.cn

In this talk, we present conditions for a set of matrices satisfying a permutation identity
to be simultaneously triangularizable. A set S of n × n matrices over an algebraically
closed field is called σ-permutable if S satisfies a permutation identity:

A1A2 · · ·Ar = Aσ(1)Aσ(2) · · ·Aσ(r), for all A1, A2, . . . , Ar ∈ S,

for some nonidentity permutation σ ∈ Sr. We prove that S is triangularizable if S is
σ-permutable for some nonidentity permutation σ ∈ Sr with ∆(σ) = 1, where ∆(σ) =
gcd{|σ(i) − i| | 1 ≤ i ≤ r}. As applications, we generalize the Radjavi’s result on
triangularization of matrices with permutable trace and results of Yan and Tang on linear
triangularization of polynomial maps. Joint work with Yueyue Li and Yan Tian.
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Almost Gorenstein Rees algebras

Naoki Endo

Waseda University

Email: naoki.taniguchi@aoni.waseda.jp

My talk is based on the recent research jointly with S. Goto, N. Matsuoka, M. Rahimi,
H. L. Truong, and K.-i. Yoshida ([3, 4, 5, 6, 7]). The purpose of this talk is to investigate
the question of when the Rees algebras of ideals are almost Gorenstein rings. Almost
Gorenstein rings are one of the candidates for a class of Cohen-Macaulay rings which
may not be Gorenstein but still good, hopefully next to the Gorenstein rings. The notion
of these local rings dates back to the paper [1] of V. Barucci and R. Fröberg in 1997,
where they dealt with one-dimensional analytically unramified local rings and developed a
beautiful theory. However, since their notion is not flexible enough to analyze analytically
ramified rings, in 2013 S. Goto, N. Matsuoka, and T. T. Phuong [2] extended the notion
to arbitrary Cohen-Macaulay local rings but still of dimension one. Finally, in 2015 S.
Goto, R. Takahashi and N. Taniguchi [9] proposed the definition of almost Gorenstein
graded/local rings of higher dimension.
Possessing in [8] one of its roots, the theory of Rees algebras has been satisfactorily

developed and nowadays one knows many Cohen-Macaulay Rees algebras. Among them
Gorenstein Rees algebras are rather rare ([10]). Nevertheless, although they are not
Gorenstein, some of Cohen-Macaulay Rees algebras are still good and could be almost
Gorenstein graded rings, which we would like to report in this talk.
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The Jordan-Hölder property, Grothendieck monoids
and Bruhat inversions

Haruhisa Enomoto

Nagoya University

Email: m16009t@math.nagoya-u.ac.jp

The Jordan-Hölder theorem for modules says that the ways in which a module can be
built up from simple modules are essentially unique. We may say that the category of
modules (with finite length) satisfies the Jordan-Hölder property, abbreviated by (JHP).
The aim of my talk is to investigate (JHP) in the setting of Quillen’s exact categories.

As in the case of module categories, we can define simple objects, composition series
and (JHP) in exact categories. Typical examples are extension-closed subcategories of
modΛ for an artin algebra Λ, and in this case, all objects have at least one composition
series. However, it turns out that there exists many categories which does not satisfies
(JHP), as well as those which does.

It is known that (JHP) implies the free-ness of the Grothendieck group, but the con-
verse does not hold: for “nice” categories such as functorially finite torsion(-free) classes,
their Grothendieck groups are free of finite rank, but (JHP) fails in some cases. Thus it is
natural to consider a more sophisticated invariant than Grothendieck groups. Then I de-
fine Grothendieck monoids, which is a commutative monoid subject to the same universal
property as the Grothendieck group. Then we have the following result:

Theorem 1. Let E be an exact category. Then E satisfies (JHP) if and only if its
Grothendieck monoid M(E) is a free monoid.

As an application, we have the following numerical criterion.

Corollary 2. Let E be a “nice” exact category. Then E satisfies (JHP) if and only if the
number of indecomposable projective objects is equal to that of simple objects.

We apply this to the representation theory of type An quiver Q by using combina-
torics on the symmetric group Sn+1. It is known that torion-free classes of mod kQ are
in bijection with c-sortable elements w of Sn+1 ([1, 3]). Let F(w) be the correspond-
ing torsion-free class. Then we obtain the following purely combinatorial description of
simples and criterion for (JHP).

Theorem 3. Simple objects in F(w) are in bijection with Bruhat inversions, or Bruhat
lower covers, of w. In particular, F(w) satisfies (JHP) if and only if the number of Bruhat
inversions of w is equal to that of supports of w.
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Let D be an integrally closed domain with its quotient field K and M be a finitely
generated torsion-free D-module. In [1], we showed that M is a generalized Dedekind
module ( G-Dedekind module for short), and M is a Dedekind module if and only if M
is a multiplication module and KM is isomorphic to K as K-modules in case D is a
Dedekind domain. These results show ,in arithmetic module theory, that G-Dedekind
modules are more important than Dedekind modules.

We assume that D is a Noetherian G-Dedekind domain (by G-Dedekind domain we mean
any v-ideal is invertible). Then we have the following results:

(1) If M is a projective D-module, then M is a G-Dedekind module.
(2) In case M is not a projective D-module, then M is generally a Krull module, that

is, for each v-submodule N of M , (N−N)v = M .
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In the general setting of an exact category, the idea of the classical theory of approxi-
mations is to select a suitable subcategory to approximate arbitrary objects by the ones
from this subcategory. While the idea of ideal approximation theory is to give morphisms
and ideals of categories equal status as objects and subcategories.

Ideal Approximation Theory for exact categories is devoted to the study of precovering
ideals, and the dual notion of preenveloping ideals, with emphasis on the notion of a
special precovering (respectively, special preenveloping) ideal. A main technical tool to
develop this theory is the mono-epi exact structure on the category of morphisms over an
exact category which is introduced and analyzed in [5]. Along the way, several important
results, such as ideal versions of Salce’s Lemma [4, 5], Wakamatsu’s Lemma [5], Eklof’s
Lemma [3] and Bongartz’s Lemma [6] which are fundamental tools in classical theory,
and an analogy of Ghost’s Lemma [5] in triangulated categories, have been derived. The
ideal approximation theory has been used to the study of ring and representation theory.
For examples, (1) it is used to give an affirmative answer to an question asked by Benson
and Gnacadja concerning sharp upper bounds for the phantom number of a finite group
[5]; and (2) it is used to prove a partial dual of a result of Xu [10]: if R is a right coherent
ring, and the class of pure projective right R-modules is closed under extensions, then
every FP-projective module is pure projective [3].
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We investigate abstract versions of the monomorphism category as studied by Ringel
and Schmidmeier. We prove that analogues of the kernel and cokernel functor send almost
split sequences over the path algebra and the preprojective algebra to split or almost split
sequences in the monomorphism category. This is based on the joint work with Julian
Külshammer, Chrysostomos Psaroudakis and Sondre Kvamme.
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On the Galois Linear Maps
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ABSTRACT

In this paper we discuss some properties of the Galois linear maps.
As an application we provide some equivalent conditions for Hopf
algebras and Hopf (co)quasigroups.
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Homological algebra was established in the 1940s, which is a powerful tool for solving
the problem in ring theory [1]. With respect to good properties, homological algebra is
attracting widespread interest in fields such as group theory[2], algebraic topology and
differential equations [3], etc. One of the major challenges in ordinary differential equa-
tions is further reduction of vector fields, in which the theory of normal form plays an
important role [4].An interesting insight concerning the application of cohomology rings
in differential equations is presented.

In this paper, the application of cohomology rings theory in the research of hypernor-
mal form (unique normal form, simplest normal form) and the associated coefficients for
a class of four-dimensional vector fields is investigated. Based on the theory of coho-
mology rings, hypernormal form for four-dimensional vector fields is obtained by using
the method of the combination of Hilbert series, new grading function and multiple Lie
brackets. With aid of the method of combining multiple Lie brackets with parametric
transformation, the corresponding relations of coefficients between original vector fields
and its further reduction are given.

The research project is supported by National Natural Science Foundation of China
(11772007, 11372014, 11802200) and also supported by Beijing Natural Science Founda-
tion (1172002, Z180005).
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For a ring Λ and a Λ-module M , the abelian group

Γ =
⊕
i≥0

ExtiΛ(M,M)

with the Yoneda product is called the Yoneda algebra, which has widely been studied, for
example, in the theory of Koszul duality.

We investigate the properties of Yoneda algebras Γ in the following setup:

• Λ is a finite dimensional algebra of finite representation type.
• M is an additive generator for the module category.

In the talk, we will give some fundamental results on these Γ, such as coherence, Goren-
stein property, and a description of the stable category of Cohen-Macaulay Γ-modules.
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Let k be an algebraically closed field of characteristic zero. Let G be a small subgroup of
GL(n, k), and let S = k[x1, . . . , xn] be the polynomial algebra. Then G acts on S naturally.
There is a natural isomorphism of algebras S ∗ G ∼=EndSG(S), where S ∗ G is the skew
group algebra, and SG is the fixed subalgebra of S. This result is usually called Auslander
Theorem (cf. [1, 2]). Auslander Theorem was generalized to noncommutative settings (cf.
[3, 4]). In this talk, I will report some progresses in noncommutative Auslander Theorem,
and their applications to noncommutative McKay correspondence (cf. [9, 5, 6]) and
noncommutative resolutions for singularities (cf. [8, 10]). Some progress on singularities
of noncommutative quadric hypersurfaces are also included in this talk (cf. [11, 7]).
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The representation of rings on finite dimension vector spaces has been generalized to the
representation of rings on modules over a commutative ring. Let S be a commutative ring
with unity and M an S-module. A representation of ring R with unity on an S-module
M is a ring homomorphism from R to the ring of endomorphisms of M . An S-module
associated with a representation of R is called a representation module of R. For any ring
homomorphism f : R → S, we define a representation of ring R with unity on M via f ,
and it is called an f -representation of ring R which is a special case of the representation
of ring R on an S-module. This S-module associated with the f -representation of ring R
is called an f -representation module of R.

The result of our study is generalized Schur’s Lemma. If an S-module is a representation
module of ring R then it is is an R-S-bimodule, and every R-S-bimodule is a representation
module of R. However, a bimodule is not necessarily an f -representation module of the
ring. Furthermore, for two ring homomorphisms f, g from R to S, we obtained a sufficient
condition of the equivalent of an f -representation and a g-representation. We also find
some a sufficient condition of a module homomorphism becomes a morphism from an f -
representation to a g-representation. This study also reveals that the sufficient condition
of f -representation of the ring R on a finite dimension free module over a principal ideal
domain S is decomposable and completely reducible.

In the case of S not commutative, we give the sufficient condition of the S-module M
becomes the representation module of R. The category of f -representation modules of
ring R is Abelian and Morita equivalent to the category of modules over an R-algebra.
Thus, if the category of modules over the R-algebra which is equivalent to the category
of f -representation modules of R satisfies the Krull-Schmidt Theorem, then the category
of f -representation modules of R also satisfies Krull-Schmidt’s Theorem.
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In the representation theory of Cohen-Macaulay algebras, a classifying the algebras with
respect to the complexity of the classification of maximal Cohen-Macaulay modules over
them is a major subject. It has been conjectured that all Cohen-Macaulay algebras split
into three classes, that is, Cohen-Macaulay discrete (including finite), Cohen-Macaulay
tame and Cohen-Macaulay wild. For graded cases, the studies are investigated by Eisenbud
and Herzog [4], Stone [5], Drozd and Tovpyha [3] and so on. In this talk, we shall give a
remark on graded countable Cohen-Macaulay representation type.
Let R = ⊕∞

i=0Ri be a commutative positively graded ring with R0 = k an algebraically
closed field. Let S be a graded Noetherian normalization. That is, S is a graded poly-
nomial subring of R such that R is a finitely generated graded S-module. A finitely
generated graded R-module M is said to be maximal Cohen-Macaulay (MCM) if M is
graded free as a graded S-module. We say that a graded Cohen-Macaulay ring R is of
graded countable CM representation type if there are infinitely but only countably many
isomorphism classes of indecomposable graded Cohen-Macaulay R-modules up to shift.

Theorem 1. Let R be of graded countable CM representation type. For each graded free
S-module F there are finitely many isomorphism classes of MCM R-modules which are
isomorphic to F as graded S-modules.

To prove the theorem we consider the analogy of a module variety for finitely generated
modules over a finite dimensional algebra, which was introduced by Dao and Shipman [2].
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In representation theory of algebras, endomorphism algebras play important roles. For
example, the endomorphism algebra of a progenerator is Morita equivalent to the orig-
inal algebra. More generally, the endomorphism algebra of a tilting module is derived
equivalence to the original algebra. When a given algebra is representation-finite, the
endomorphism algebra of the additive generator in the module category is the Auslander
algebra [A]. Thus, endomorphism algebras are interesting subjects of study.

Our purpose is to investigate the representation types of endomorphism algebras. How-
ever, in most cases, endomorphism algebras are representation-infinite. On the other hand,
the endomorphism algebra of a generator is expected to be easy deal with. Therefore,
we consider the endomorphism algebra of a generator over a symmetric algebra, so-called
a gendo-symmetric algebra [FK]. In particular, our aim is to determine when a gendo-
symmetric algebra is representation-finite. In the case, we also study the structure of the
Auslander-Reiten quiver.

Our main result can be stated as follows. Let B be the trivial extension algebra of
an algebra A and X an indecomposable non-projective B-module. Consider the gendo-
symmetric algebra Λ := EndB(B ⊕ X) given by the generator B ⊕ X. In this talk, we
give a complete description of Λ being representation-finite. Moreover, we construct the
stable Auslander-Reiten quiver of Λ.
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Some results on Noetherian Warfield domains
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Let R be a Noetherian domain. It is proved that R is a NWF domain if and only if,
for every maximal ideal M of R, both M and M2 can be generated by two elements. A
sufficient condition under which all ideals of a domain are SG-projective is also given in
this article.
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Let A be an abelian category having enough projective objects and enough injective
objects. We prove that if A admits an additive generating object, then the extension
dimension and the weak resolution dimension of A are identical, and they are at most
the representation dimension of A minus two. By using it, for a right Morita ring Λ,
we establish the relation between the extension dimension of the category mod Λ of
finitely generated right Λ-modules and the representation dimension as well as the global
dimension of Λ. In particular, we give an upper bound for the extension dimension of
mod Λ in terms of the projective dimension of certain class of simple right Λ-modules and
the radical layer length of Λ. It is a joint work with Junling Zheng and Xin Ma.
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Throughout this talk, let R be a commutative noetherian local ring with maximal ideal
m and residue field k. All modules considered in this paper are assumed to be finitely
generated. The notion of a strong test module for projectivity has been introduced and
studied by Ramras [3]. An R-module M is called a strong test module for projectivity if
every R-module N with Ext1R(N,M) = 0 is projective. The residue field k and the unique
maximal ideal m are typical examples of a strong test module for projectivity.

Definition 1. Let M be a non-zero module and let n be a positive integer.
(1) M is called n-test module for projectivity if every module X with Ext1∼n

R (X,M) = 0
is projective.

(2)M is called n-Tor-test module for projectivity if every moduleX with TorR1∼n(X,M) =
0 is projective.

The main results in this talk are the following three theorems.

Theorem 2. If M is an n-Tor-test module for projectivity then M,ΩRM,Ω2
RM, . . . ,Ωn

RM
are n-test modules for projectivity.

Theorem 3. If I is weakly m-full and TorR1 (M,R/I) = 0 then a free covering 0 → N →
F → M → 0 induces a short exact sequence 0 → N/IN → F/IF → M/IM → 0
satisfying depthRN/IN > 0. Moreover, if I is m-primary then M is projective.

Theorem 4. Suppose I is weakly m-full and depthRR/I = 0. If TorRn (M,R/I) = 0 and
depthR(Tor

R
n−1(M,R/I)) > 0 then proj.dimRM < n− 1 for all positive integer n.

These theorems induce the following corollaries.

Corollary 5. [1] Let R be a local ring and let I be an m-primary ideal of R. If I is weakly
m-full then R/I is a 1-Tor-test module for projectivity.

Corollary 6. Let R be a local ring and let I be an m-primary ideal of R. If I is weakly
m-full then R/I and I are strong test modules for projectivity.

Corollary 7. [2] Suppose I is weakly m-full and depthRR/I = 0, the following statements
hold.

(1) R/I is a 2-Tor-test module for projectivity.
(2) R/I and I are 2-test modules for projectivity.
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The purpose of this talk is to investigate the structure and ubiquity of Ulrich ideals in
a hypersurface ring.

In a Cohen-Macaulay local ring (R,m), an m-primary ideal I is called an Ulrich ideal
in R if there exists a parameter ideal Q of R such that I ) Q, I2 = QI, and I/I2 is
R/I-free. The notion of Ulrich ideal/module dates back to the work [3] in 2014, where
S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, and K.-i. Yoshida introduced the
notion, generalizing that of maximally generated maximal Cohen-Macaulay modules ([1]),
and started the basic theory. The maximal ideal of a Cohen-Macaulay local ring with
minimal multiplicity is a typical example of Ulrich ideals, and the higher syzygy modules
of Ulrich ideals are Ulrich modules. In [3, 4], all Ulrich ideals of Gorenstein local rings of
finite CM-representation type with dimension at most 2 are determined by means of the
classification in the representation theory.

Nevertheless, even for the case of hypersurface rings, there seems known only scat-
tered results which give a complete list of Ulrich ideals, except the case of finite CM-
representation type and the case of several numerical semigroup rings. Therefore, in
this talk, we focus our attention on a hypersurface ring which is not necessarily finite
CM-representation type.

In what follows, unless otherwise specified, let (S, n) be a Cohen-Macaulay local ring
with dimS = d + 1 (d ≥ 1), and f ∈ n a non-zero divisor on S. We set R = S/(f). For
each a ∈ S, let a denote the image of a in R. We denote by XR the set of Ulrich ideals in
R. We then have the following, which characterizes Ulrich ideals in a hypersurface ring.

Theorem 1. Suppose that (S, n) is a regular local ring with dimS = d + 1 (d ≥ 1) and
0 6= f ∈ n. Set R = S/(f). Then we have

XR =

(a1, a2, · · · , ad, b)

∣∣∣∣∣∣∣∣∣
a1, a2, . . . , ad, b ∈ n be a system of parameters of S,
and there exist x1, x2, . . . , xd ∈ (a1, a2, · · · , ad, b) and ε ∈ U(S)

such that b2 +
d∑
i=0

aixi = εf .

 ,

where U(S) denotes the set of unit elements of S.

Let a1, . . . , ad, b ∈ n be a system of parameters of S, so that b2 +
∑d

i=1 aixi = εf

with x1, . . . , xd ∈ (a1, · · · , ad, b) and ε ∈ U(S). Then I = (a1, a2, · · · , ad, b) ∈ XR, with
a reduction Q = (a1, a2, · · · , ad) by Theorem 1. By [3, Corollary 7.2], in the exact

sequence 0 → Q
ι→ I → R/I → 0, the free resolution of I induced from minimal free

resolutions of Q and R/I is also minimal. We construct this resolution, by using the

relation b2 +
∑d

i=1 aixi = εf . We set

K = K•(a1, . . . , ad;S) = (K•, ∂
K
• ) and L = K•(x1, . . . , xd;S) = (K•, ∂

L
• )

are Koszul complexes of S generated by a1, . . . , ad and x1, . . . , xd. We define G = (G•, ∂•)

by G0 = K0, Gi = Ki ⊕Gi−1 = S⊕
∑i

j=0 (d
j) for i ≥ 1, and
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∂1 =
[
∂K1 b

]
, ∂2 =

[
∂K2 −bEd | t∂L1
O ∂1

]
, and

∂i =

[
∂Ki (−1)i−1bE( d

i−1)
| t∂Li−1 | O

O ∂i−1

]
for i ≥ 3.

We notice that ∂i = ∂d+1 for any i ≥ d+ 1. Set F = (F•, ∂•) = (G•⊗R, ∂•⊗R). We then
have the following.

Theorem 2. F : · · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0 = R
ε→ R/I → 0 is a minimal free

resolution of R/I.

As a consequence, we get a matrix factorization of d-th syzygy module of R/I, which
is an Ulrich module with respect to I (see [3, Definition 1.2]).

Corollary 3. Let M = Im ∂d. Then 0 → Gd+2
∂d+1→ Gd+1

τ→ M → 0 is exact as S-

modules and ∂2d+1 = gE2d, where τ : Gd+1
ε→ Fd+1

∂d→ M . Therefore ∂d+1 gives a matrix
factorization of M .

References

1. J. P. Brennan, J. Herzog, and B. Ulrich, Maximally generated maximal Cohen-Macaulay mod-
ules, Math. Scand., 61 (1987), no. 2, 181–203.

2. S. Goto, Ulrich ideals in k[[X,Y ]]/(Y 3) and k[[X,Y ]]/(X2Y ), The Proceedings of the 40-th Sympo-
sium on Commutative Algebra, in preparation.

3. S. Goto, K. Ozeki, R. Takahashi, K.-i. Yoshida, and K.-i. Watanabe, Ulrich ideals and
modules, Math. Proc. Camb. Phil. Soc., 156 (2014), 137–166.

4. S. Goto, K. Ozeki, R. Takahashi, K.-i. Yoshida, and K.-i. Watanabe, Ulrich ideals and
modules over two-dimensional rational singularities, Nagoya Math. J., 221 (2016), 69–110.

5. R. Isobe, The structure of Ulrich ideals in hypersurfaces, arXiv:1905. 02048.

2010 Mathematics Subject Classification. 13D02, 13H10, 13H15.

41



Hochschild cohomology of Beilinson algebras of graded down-up
algebras

Ayako Itaba and Kenta Ueyama

Tokyo University of Science and Hirosaki University

Email: itaba@rs.tus.ac.jp and k-ueyama@hirosaki-u.ac.jp

Let k be an algebraically closed field of char k = 0. A graded k-algebra A(α, β) :=
k⟨x, y⟩/(x2y − βyx2 − αxyx, xy2 − βy2x − αyxy), deg x = m, deg y = n ∈ N+ with
parameters α, β ∈ k is called a graded down-up algebra. It is known that a graded down-
up algebra A = (α, β) is a noetherian AS-regular algebra of dimension 3 if and only if β ̸= 0
([4]). By the special case of [5, Theorem 4.14], if A = A(α, β) is a graded down-up algebra
with β ̸= 0, then the Beilinson algebra ∇A of A is extremely Fano of global dimension
2, and there exists an equivalence of triangulated categories Db(tailsA) ∼= Db(mod∇A),
where tailsA is the noncommutative projective scheme of A in the sense of [1].

The aim of our talk is to investigate the Hochschild cohomology groups HHi(∇A) of
∇A of a graded down-up algebra A = A(α, β) with β ̸= 0. If deg x = deg y = 1, then a
description of the Hochschild cohomology group HHi(∇A) of ∇A has been obtained using
a geometric technique ([2, Table 2]). In this talk, for deg x = 1, deg y = n ≥ 2, we give
the dimension formula of HHi(∇A) for each i ≥ 0. In this case, the Beilinson algebra ∇A
of A is given by the following quiver Q with relations fi = 0 (1 ≤ i ≤ n), g = 0:

Q := 1
x1 //

y1

552
x2 //

y2

55· · ·
xn−1 // n

xn //

yn

66n+ 1
xn+1 //

yn+1

55n+ 2
xn+2 //

yn+2

55· · ·
x2n // 2n+ 1

x2n+1 // 2n+ 2 ,

fi := xixi+1yi+2 − βyixi+nxi+n+1 − αxiyi+1xi+n+1,

g := x1y2yn+2 − βy1yn+1x2n+1 − αy1xn+1yn+2.

In particular, it turns out from our dimension formula that the group structure of HHi(∇A)
depends on the values of α2+4β and δn := ( 1 0 )

(
α 1
β 0

)n
( 1
0 ) ([3, Theorem 1.4]). Using the

fact that Hochschild cohomology is invariant under derived equivalence, our result im-
plies the following: Let A = A(α, β) and A′ = A(α′, β′) be graded down-up algebras with
deg x = 1, deg y = n ≥ 1, where β ̸= 0, β′ ̸= 0. If δn := ( 1 0 )

(
α 1
β 0

)n
( 1
0 ) = 0 and δ′n :=

( 1 0 )
(
α′ 1
β′ 0

)n
( 1
0 ) ̸= 0, then Db(tailsA) ≇ Db(tailsA′) ([3, Corollary 1.5]).
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This talk is based on joint work with G. Zhou and W. Lyu. It is known that the non-
standard periodic representation-infinite selfinjective algebras of polynomial growth are
socle deformations of the corresponding periodic standard algebras, and every such an
algebra Λ is geometric socle deformation of excactly one representation-infinite standard
algebra Λ′ of polynomial growth. These algebras Λ and Λ′ are called exceptional periodic
algebras of polynomial growth in [1]. In [2], their Hochschild cohomology groups HHi(Λ)
and HHi(Λ′) for i = 0, 1, 2 are determined, and it is shown that Λ and Λ′ are not derived
equivalent.
In this talk, we determine the Hochschild cohomology ring of a class of exceptional

periodic selfinjective algebras of polynomial growth.

References
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McCoy property over Jacobson radicals
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Abstract In this paper, we introduce a new class of rings related to Jacobson radicals
called feckly McCoy rings. A ring R is called right feckly McCoy if the factor ring R/J(R)
is a right McCoy ring. We mainly study the structural property of right feckly McCoy
rings, and elaborate upon some special extensions of rings with McCoy property over
Jacobson radicals. It is also brought into focus the Ore extension of right feckly McCoy
rings under some conditions. Moreover, we generalize the annihilator of a ring to the
Jacobson radical, and study some special properties of rings with annihilators over the
Jacobson radical under the right feckly McCoy condition.

keywords McCoy ring, Jacobson radical, feckly McCoy ring, polynomial extension,
annihilator
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We introduce the class of Cohen-Macaulay (=CM) dg (=differential graded) modules
over Gorenstein dg algebras and study their basic properties. We show that the category
of CM dg modules forms a Frobenius extriangulated category, in the sense of Nakaoka and
Palu, and it admits almost split extensions. We also study representation-finite d-self-
injective dg algebras A in detail. In particular, we classify the Auslander-Reiten (=AR)
quivers of CMA for those A in terms of (−d − 1)-Calabi-Yau (=CY) configurations,
which are Riedtmann’s configurations for the case d = 0. For any given (−d − 1)-CY
configuration C, we show there exists a d-self-injective dg algebra A, such that the AR
quiver of CMA is given by C.
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The characteristic variety of an elliptic algebra
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This is based on joint work with Alex Chirvasitu and S. Paul Smith [2, 3, 4].
There have been several attempts to define the space associated to a noncommutative

ring. For a graded algebra over a field k, one established approach is to look at QGrA, the
category of graded A-modules modulo the full subcategory consisting of torsion modules.
When the algebra A is commutative and finitely generated in degree one, the category
QGrA is equivalent to the category of quasi-coherent sheaves on ProjA. Thus, for a
noncommutative algebra A, we may consider QGrA as the category of “quasi-coherent
sheaves” on the associated “noncommutative projective scheme”.

To understand QGrA, the first things one should look at are objects coming from point
modules:

Definition 1. Let A be a nonnegatively graded k-algebra that is finitely generated in
degree one. A graded A-module M is called a point module if it is cyclic and satisfies

dimkMi =

1 if i ≥ 0,
0 if i < 0.

Artin-Tate-Van den Bergh [1] showed that the point modules are parametrized by a
space called the point scheme, which is defined as an inverse limit of schemes. Each point
module defines a simple object in QGrA. Point modules have played a crucial role in the
study of Artin-Schelter regular algebras.

In 1989, Feigin and Odesskii introduced a family of algebras Qn,k(E, τ) parametrized
by an elliptic curve E over C, a closed point τ ∈ E, and coprime integers n > k ≥ 1.
This is a huge generalization of higher dimensional Sklyanin algebras, and provides flat
deformations of polynomial algebras when τ varies.

The aim of this talk is to describe the major component of the point scheme of the
elliptic algebra Qn,k(E, τ), which we call the characteristic variety. For a higher dimen-
sional Sklyanin algebra, the characteristic variety is the elliptic curve E and it is the only
non-discrete irreducible component of the point scheme. For other elliptic algebras, the
characteristic variety depends on the negative continued fraction of the rational number
n/k and is realized as the quotient of a product of copies of E by a finite group.
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Tate-Hochschild cohomology from the singularity category
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The singularity category (or stable derived category) was introduced by Buchweitz
[1] in 1986 and rediscovered in a geometric context by Orlov [8] in 2003. It measures
the failure of regularity of an algebra or scheme. Following Buchweitz, one defines the
Tate-Hochschild cohomology of an algebra as the Yoneda algebra of the identity bimod-
ule in the singularity category of bimodules. In recent work, Zhengfang Wang [9] has
shown that Tate-Hochschild cohomology is endowed with the same rich structure as clas-
sical Hochschild cohomology: a Gerstenhaber [5] bracket in cohomology and a B-infinity
structure [3] at the cochain level. This suggests that Tate-Hochschild cohomology might
be isomorphic to the classical Hochschild cohomology of a (differential graded) category,
in analogy with a theorem of Lowen-Van den Bergh [7] in the classical case. We show
that indeed, at least as a graded algebra, Tate- Hochschild cohomology is the classical
Hochschild cohomology of the singularity category with its canonical dg enhancement. In
joint work with Zheng Hua [4], we have applied this to prove a weakened version of a
conjecture by Donovan-Wemyss [2] on the reconstruction of a (complete, local, compound
Du Val) singularity from its contraction algebra, i.e. the algebra representing the non
commutative deformations of the exceptional fiber of a resolution.
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In this talk, a new semistar operation, called the q-operation, on a commutative ring
R is introduced in terms of the ring Q0(R) of finite fractions. It is defined as the map
q : Fq(R) → Fq(R) by A 7→ Aq := {x ∈ Q0(R) | there exists some finitely generated
semiregular ideal J of R such that Jx ⊆ A} for any A ∈ Fq(R), where Fq(R) denotes the
set of nonzero R-submodules of Q0(R). The main superiority of this semistar operation
is that it can also act on R-modules. And we can also get a new hereditary torsion
theory τq induced by a (Gabriel) topology {I | I is an ideal of R with Iq = Rq}. Based
on the existing literature of τq-Noetherian rings by Golan and Bland et al., in terms of
the q-operation, we can study them in more detailed and deep module-theoretic point of
view, such as τq-analogue of the Hilbert basis theorem, Krull’s principal ideal theorem,
Cartan-Eilenberg-Bass theorem, and Krull intersection theorem.
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Throughout this paper, all rings are assumed to be associative with 1. We let R denote
an arbitrary ring, and let σ be any automorphism of R. By R[x;σ] (R[x, x−1;σ]) we
mean the skew (Laurent) polynomial ring over R, subject to the (left) skewing condition
xr = σ(r)x (x−1r = σ−1(r)x−1) for each r ∈ R.

Pearson and Stephenson [4] characterized the prime radical of a skew polynomial ring
as P (R[x;σ]) = (P (R) ∩ Pσ(R)) + Pσ(R)xR[x;σ] where Pσ(R) is the intersection of all
strongly σ-prime ideals of R, which is the so-called σ-prime radical of R. The prime radical
of a skew Laurent polynomial ring was investigated by Cheon et al. [1]. They showed
that P (R[x, x−1;σ]) = P(σ,σ−1)(R)[x, x−1;σ], where P(σ,σ−1)(R) denotes the intersection of
all (σ, σ−1)-prime ideals of R.

On the other hand, Ferrero [2] characterized the generalized nilradical of skew poly-
nomial and skew Laurent polynomial rings as N(R[x;σ]) = N(R) + Nσ(R)xR[x;σ] and
N(R[x, x−1;σ]) = Nσ(R)[x, x−1;σ], where Nσ(R) is the intersection of all the σ-ideals
of R which are also completely prime ideals. Ferrero also showed that s(R[x;σ]) =
s(R) + sσ(R)xR[x;σ], where s(R) (sσ(R)) denotes the (σ-)strongly prime radical of R in
[3].

For the continuation of the study of radicals of skew (Laurent) polynomial rings, in
this paper, we conduct the study showing that radicals between the prime radical and the
generalized nilradical have similar forms to the above formulas.

In particular, we first give a complete description of the Levitzki radical of a skew
(Laurent) polynomial ring through the prime ideals and skewed prime ideals in the base
ring. We next provide formulas similar to the above expression of radicals for the strongly
prime radical and the uniformly strongly prime radical of these rings.
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Quantum unipotent cell is introduced by De Concini-Procesi [3] as a quantum ana-
logue of the coordinate ring of unipotent cells and they proved an isomorphism between
quantum analogue of coordinate ring of intersection of unipotent subgroup and shifted
Gaussian cells in finite type. In this talk, we construct quantum analogue of twist au-
tomorphism whose classical counterpart is introduced by Berenstein-Fomin-Zelevinsky
[1] and Berenstein-Zelevinsky [2] in the study of total positivity for Schubert varieties.
We prove the quantum twist automorphism preserves the dual canonical basis of quan-
tum unipotent cells. Furthemore quantum cluster monomials is also preserved under the
quantum twist automorphism in symmetric case using the additive categorification by
Geiss-Leclerc-Schröer [4]. This is a joint work [5] with Hironori Oya.
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A characterization of local rings
of countable representation type

Toshinori Kobayashi

Nagoya university

Email: m16021z@math.nagoya-u.ac.jp

All the contents of this article are taken from joint work with Justin Lyle and Ryo
Takahashi [3]. We refer the reader to it for the details.

Cohen–Macaulay representation theory has been studied widely and deeply for more
than four decades. Buchweitz, Greuel and Schreyer [2] proved that the local hypersurfaces
of finite (resp. countable) CM-representation type,( that is, Cohen–Macaulay local rings
possessing finitely/infinitely-but-countably many nonisomorphic indecomposable maximal
Cohen–Macaulay modules) are precisely the local hypersurfaces of type (An) with n ≥ 1,
(Dn) with n ≥ 4, and (En) with n = 6, 7, 8 (resp. (A∞) and (D∞)).

In this talk, we introduce another representation type, namely, finite CM+-representation
type. We say that a Cohen–Macaulay local ring has finite CM+-representation type if
there exist only finitely many isomorphism classes of indecomposable maximal Cohen–
Macaulay modules that are not locally free on the punctured spectrum. Then, Araya,
Iima and Takahashi [1] observed that the local hypersurfaces of type (A∞) and (D∞) has
finite CM+-representation type. Thus, it is natural to ask the following question.

Conjecture 1. Let R be a complete local Gorenstein ring of dimension d not having an
isolated singularity. Then the following two conditions are equivalent.

(1) The ring R has finite CM+-representation type.
(2) There exist a complete regular local ring S and a regular system of parameters

x0, . . . , xd such that R is isomorphic to

S/(x2
0 + x2

2 + · · ·+ x2
d) or S/(x2

0x1 + x2
2 + · · ·+ x2

d).

We give a complete answer to this conjecture in dimension one.

Theorem 2. Let R be a homomorphic image of a regular local ring. Suppose that R
does not have an isolated singularity but is Gorenstein. If dimR = 1, the following are
equivalent.

(1) The ring R has finite CM+-representation type.
(2) There exist a regular local ring S and a regular system of parameters x, y such that

R is isomorphic to S/(x2) or S/(x2y).

When either of these two conditions holds, the ring R has countable CM-representation
type.
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An application of a theorem of Sheila Brenner for Hochschild
extension algebras of a truncated quiver algebra

Hideyuki Koie

National Institute of Technology (KOSEN), Nagaoka College
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Brenner [1] studied the number of indecomposable direct summands of the middle
term of an almost split sequence starting with a simple module, and she showed how
to determine this number for an artin algebra. As a consequence of this result she ob-
tains, for a self-injective artin algebra, the number of indecomposable direct summands
of radP/socP , where P is indecomposable projective. Moreover, Fernández-Platzeck [2]
gave simple interpretation for of them the trivial extension algebra of an algebra. Their
description is given in terms of oriented cycles in the ordinary quiver of the trivial ex-
tension algebra. In this talk, we will give a similar interpretation of a theorem of Sheila
Brenner for Hochschild extension algebras which is a generalization of trivial extension
algebras.
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Mutations for star-to-tree complexes and pointed Brauer trees

Yuta KOZAKAI
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Throughout this talk, let k be an algebraically closed field, G0 a Brauer star of type
(e,m) and B a Brauer star algebra over k associated to G0.

Let us begin with the definition of the two-restricted tilting complex for the Brauer
star algebra B and the fact on this complex.

Definition 1. [2] Let T̂ be a tilting complex over a Brauer star algebra B. We call T̂

a two-restricted tilting complex if any indecomposable direct summand of T̂ is a shift of
the following elementary complex, where the first nonzero term is in degree 0.

• Si : 0 → Qi → 0,

• Tjk : 0 → Qj

hjk−−→ Qk → 0,

where the map hjk has maximal rank among homomorphisms from Qj to Qk.

Theorem 2. [2] There is a one-to-one correspondence between the set of multiplicity-free
two-restricted tilting complexes for the Brauer star algebra B and the set of pointed Brauer
trees of type (e,m).

On the other hand, in [1], it is shown that any representation-finite symmetric algebra
is tilting-connected, so any Brauer tree algebra is a tilting-connected algebra. Hence, for
any two-restricted tilting complex T̂ for the Brauer star algebra B, there must exist a
sequence of irreducible mutations converts B to T̂ . Regarding this fact, in [3] they give a

sequence of irreducible mutations converts B to T̂ in the case that T̂ corresponds to the
pointed Brauer tree with the reverse pointing or the left alternating pointing.

In this talk, for any two-restricted tilting complex T̂ , we give an algorithm to find such
a sequence of mutations from the pointed Brauer tree to which T̂ corresponds.
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The Auslander-Reiten conjecture for non-Gorenstein rings

Shinya Kumashiro

Chiba University
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The purpose of this talk is to study the vanishing of cohomology. The Auslander-
Reiten conjecture is one of the long-standing conjectures about the vanishing, that is, for
a Noetherian ring R and a finitely generated R-module M , ExtiR(M,M ⊕ R) = 0 for all
i > 0 implies that M is a projective R-module. In this talk, we focus on the Auslander-
Reiten conjecture for the case where R is commutative. In that case, the following result
is fundamental.

Fact 1. Suppose that R is a commutative Noetherian local ring. Let Q be an ideal of R
generated by a regular sequence on R. Then the Auslander-Reiten conjecture holds for
R if and only if it holds for R/Q.

Motivated by this result, we explore the Auslander-Reiten conjecture for R/Qℓ in con-
nection with that for R, where ℓ is a positive integer. Let us note that Qℓ do not preserve
some homological properties, for example, Gorensteinness. Therefore R/Qℓ gives a new
class of rings which satisfy the Auslander-Reiten conjecture. As a result of this talk, we
have an affirmative answer to this question for the case where R is Gorenstein and ℓ is
bounded above by the number of minimal generators of Q. Furthermore, we have two
applications of the result. To state the applications, let us recall some notations.

Definition 2. (1) (determinantal ring) Let s ≤ t be positive integers and A[X] =
A[Xij]1≤i≤s,1≤j≤t a polynomial ring over a commutative ring A. Let Is(X) denote
the ideal of A[X] generated by the maximal minors of the matrix (Xij). Then
A[X]/Is(X) is called a determinantal ring over A.

(2) (Ulrich ideal) Let (R,m) be a Cohen-Macaulay local ring and I an m-primary
ideal. Then I is an Ulrich ideal if
(a) I is not a parameter ideal, but I2 = qI for some parameter ideal q.
(b) I/I2 is a free R/I-module.

With these notations, we have the following, which is a goal of this talk.

Theorem 3. The following assertions are true.

(1) Suppose A is either a complete intersection or a Gorenstein normal domain. Then
the Auslander-Reiten conjecture holds for the determinantal ring A[X]/Is(X) if
2s ≤ t+ 1.

(2) Let R be a Cohen-Macaulay local ring. If there is an Ulrich ideal such that R/I is
a complete intersection, then the Auslander-Reiten conjecture holds for R.
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Partial group actions and partial Galois extensions
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The talk will be based on the paper [1]. Let (S, α) be a set with a partial action of a
group G. We shall present some results on partial orbits and partial stabilizers. If (S, α) is
a partial Galois extension, we also study the partial Galois extensions in (S, α) generated
by central idempotents of S. Let MK denote the set of minimal elements of the Boolean
ring generated by certain central idempotents of S associated to K. It is invariant under
the partial action α restricted to K, denoted αK . We will show how to construct partial
Galois extensions in (S, α) via partial orbits in the αK-invariant subset MK .
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On CRP rings
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We study the one-sided regularity of matrices in upper triangular matrix rings in rela-
tion with the structure of diagonal entries. We consider next a ring theoretic condition
that ab being regular implies ba being also regular for elements a, b in a given ring. Rings
with such a condition are said to be commutative at regular product (simply, CRP rings).
CRP rings are shown to be contained in the class of directly finite rings, and we prove
that if R is a directly finite ring that satisfies the descending chain condition for principal
right ideals or principal left ideals, then R is CRP. We obtain in particular that the upper
triangular matrix rings over commutative rings are CRP.
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The 8th China-Japan-Korea International Conference

Title:
Rudimentary rings: Rings have a faithful indecomposable endoregular module

Gangyong Lee (Chungnam National University)

Jacobson, in 1945, introduced the notion of primitive rings and proved the 
structure theorem for primitive rings as an analogue of the Wedderburn-Artin 
structure theorem for semisimple artinian rings. The existence of a faithful 
simple module plays a crucial role in studying primitive rings. The study of 
the class of primitive rings has been a topic of wide interest.

Now, we introduce the notion of a rudimentary ring as a generalization of 
a primitive ring. A ring R is called right rudimentary if there exists a faithful 
right R-module M such that EndR(M) is a division ring. We provide results 
on this new concept and give a number of examples that delimit our results 
and the notions. Szele showed that there is no noncommutative division ring 
as the endomorphism ring of an abelian group (as a Z-module). We extend 
this result on matrix rings over a commutative ring.

(This is a joint work with Cosmin Roman and Xiaoxiang Zhang)

57

48.



A note on Skolem-Noether algebras
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Abstract

The paper was motivated by Kovacs’ paper [?], Isaacs’ paper [?] and a recent
paper [?] concerning Skolem-Noether algebras due to Brešar et al.. Let K be
a unital commutative ring, not necessarily a field. Given a unital K-algebra S,
where K is contained in the center of S, n ∈ N, the goal of this paper is to study
the question: when can a homomorphism ϕ : Mn(K) → Mn(S) be extended to
an inner automorphism of Mn(S)? As an application of main results proved in
the paper, it is proved that if S is a semilocal algebra with a central separable
subalgebra R, then any homomorphism from R into S can be extended to an
inner automorphism of S.
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Key words and phrases: Skolem-Noether algebra, (inner) automorphism, matrix al-
gebra, central simple algebra, central separable algebra, semilocal ring, UFD, stably
finite, Dedekind-finite.
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The center subalgebra of the quantized enveloping algebra of a
simple Lie algebra revisited
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Let g be a finite dimensional simple complex Lie algebra and U = Uq(g) the

quantized enveloping algebra (in the sense of Jantzen) with q being generic. In
this paper, we show that the center Z(Uq(g)) of the quantum group Uq(g) is

isomorphic to a monoid algebra, and that Z(Uq(g)) is a polynomial algebra if and

only if g is of type A1, Bn, Cn, D2k+2, E7, E8, F4 or G2. Moreover, when g is of

type An, then Z(Uq(g)) is isomorphic to a quotient algebra of a polyno-mial

algebra described by n-sequences; when g is of type Dn with n odd, then Z(Uq(g))

is isomorphic to a quotient algebra of a polynomial algebra in n + 1 variables

with one relation; when g is of type E6, then Z(Uq(g)) is isomorphic to a

quotient algebra of a polynomial algebra in fourteen variables with eight

relations;
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Rota-Baxter H-operators and pre-Lie

H-pseudoalgebras over a cocommutative Hopf

algebra H

Linlin Liu
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ABSTRACT

The aim of this paper is to study the Rota-Baxter H-operators and H-
pseudoalgebras of different types over a cocommutative Hopf algebra H. Firstly,
we introduce the concept of a Rota-Baxter H-operator on an H-pseudoalgebra, and
give some basic properties and examples. Then, we obtain a large number of pre-
Lie (resp. associative) H-pseudoalgebras from the ordinary Rota-Baxter algebras.
Finally, the annihilation algebras of the left pre-Lie H-pseudoalgebras are discussed.
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Relative coherent modules and semihereditary modules
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Given a positive integer n, a left R-module M is called n-coherent (resp. n-semihereditary)
if every n-generated submodule of M is finitely presented (resp. projective). We investi-
gate the properties of n-coherent modules and n-semihereditary modules. Various results
are developed, many extending known results.
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DG polynomial algebras and their homological properties
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In [1], we introduce and study differential graded (DG for short) polynomial algebras.
In brief, a DG polynomial algebra A is a connected cochain DG algebra such that its
underlying graded algebra A# is a polynomial algebra k[x1, x2, · · · , xn] with |xi| = 1, for
any i ∈ {1, 2, · · · , n}.

We describe all possible differential structures on DG polynomial algebras; compute
their DG automorphism groups; study their isomorphism problems; and show that they
are all homologically smooth and Gorestein DG algebras. Furthermore, it is proved that
the DG polynomial algebra A is a Calabi-Yau DG algebra when its differential ∂A 6= 0
and the trivial DG polynomial algebra (A, 0) is Calabi-Yau if and only if n is an odd
integer.

Beside these, I will also present our most recent works [2] on the various invariants of
DG polynomial algebras.
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AS-regularity of geometric algebras
of plane cubic curves
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A geometric algebra A = A(E, σ) introduced by Mori [4] is a quadratic algebra which
determines and is determined by the pair (E, σ) where E is a projective scheme and
σ ∈ AutE. In noncommutative algebraic geometry, AS-regular algebras are the most
important class of algebras to study, and Artin-Tate-Van den Bergh [1] showed that every
3-dimensional quadratic AS-regular algebra is a geometric algebra where E is P2 or a
cubic curve in P2. In this talk, we study its converse.
Suppose that E is a cubic curve in P2. If E is singular, then a geometric algebra

A = A(E, σ) is AS-regular for almost all σ ∈ AutE by [3]. This is not the case if E is
smooth. If E is smooth, then we choose a suitable τ ∈ AutE of finite order as in [2] so
that every σ ∈ AutE can be written as σ = σpτ

i where p ∈ E, i ∈ Z|τ | and |τ | is the order
of τ . One of the main results of [3] is that we characterize AS-regularity of a geometric
algebra A = A(E, σpτ

i) in terms of the pair (p, i). It turns out that if i = 0, then A is
always an AS-regular algebra (called a Sklyanin algebra). On the other hand, if i ̸= 0,
then A is hardly ever AS-regular.
If time permits, we will explain how to check AS-regularity using a twist of a superpo-

tential in the sense of [5].
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Efficient generation of ideals in core subalgebras of
the polynomial ring k[t] over a field k
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This is a joint work [1] with Naoki Endo, Shiro Goto, and Yuki Yamamoto.
In this talk, we find efficient systems of generators for ideals in certain subalgebras R

of the polynomial ring S = k[t] with one indeterminate t over a field k. The class of
subalgebras which we explore in this talk naturally includes the semigroup rings k[H] of
numerical semigroups H.

Let R be a k-subalgebra of S. We say that R is a core of S, if tc0S ⊆ R for some integer
c0 > 0. If R is a core of S, then

k[tc0 , tc0+1, . . . , t2c0−1] ⊆ R ⊆ S,

and a given k-subalgebra R of S is a core of S if and only if R ⊇ k[H] for some numerical
semigroup H. Therefore, once R is a core of S, R is a finitely generated k-algebra
of dimension one, and S is a birational module-finite extension of R with tc0S ⊆ R : S.
Typical examples of cores are, of course, the semigroup rings k[H] of numerical semigroups
H. However, cores of S do not necessarily arise as semigroup rings for some numerical
semigroups.

Let R be a core k-subalgebra of S. Take f ∈ R such that f(0) = 1. We consider the
ideal I = fS ∩R.

Problem 1. (1) Determine the minimal number of generators of I.
(2) Find a system of generators of I.

The problem (1) is already known by classical results given by O. Forster [2] and R.
G. Swan [3]. In this talk, we give a method to solve the problem (2) and we recover the
known results on the problem (1) in our situation.
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On a cubical generalization of preprojective algebras
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In this abstract K denotes a field of char K = 0 and Q denotes a finite acyclic quiver.
Recall that the preprojective algebra Π(Q) = KQ/(ρ) is the path algebra KQ of the

double quiver Q of Q with the mesh relation ρ =
∑

α∈Q1
αα∗ − α∗α. It is an important

mathematical object having rich representation theory and plenty of applications. In
this joint work with M. Herschend, we study a cubical generalization Λ = Λ(Q) :=
KQ/([a, ρ] | a ∈ Q1) where [−,+] is the commutator. We note that our algebra Λ is a
special case of algebras Λλ,µ introduced by Etingof-Rains [4], which is a special case of
algebras ΛΦ introduced by Cachazo-Katz-Vafa [2]. However, our algebra Λ of very special
case has intriguing properties, among other things it provides the universal Auslander-
Reiten triangle.
We may equip Λ with a grading by setting degα = 0, degα∗ := 1 for α ∈ Q1. Λ1 We

introduce an algebra to be A = A(Q) :=
(
KQ Λ1

0 KQ

)
where Λ1 is the degree 1-part of Λ.

We note that Etingof-Latour-Rains [3] showed that if Q is a ADE-quiver, then Λ is
symmetric. We summarize existing results on the algebras Λ and A.

Theorem 1. (1) Λ is finite dimensional if and only if Q is an ADE-quiver if and only if
A is 2-representation finite algebra. Assume that this is the case. Then Λ is a stably 3-
Calabi-Yau symmetric algebra. Moreover we have an isomorphism Λ ∼=

⊕
M∈ind KQ M⊗K

M of KQ-modules.
(2) Λ is infinite dimensional if and only if Q is not an ADE-quiver A is 2-representation

infinite algebra. Assume this is the case. Then Λ is graded coherent and 3-Calabi-Yau.
(3) In any case, the 2-quasi-Veronese algebra of Λ is isomorphic to the 3-preprojective

algebra of A. 2-APR-tilting operations on A are compatible with reflections of quiver Q.

Let Q be an ADE-quiver, Q̂ the extended one and G < SL(2) the corresponding finite

subgroup. Then Λ(Q̂) is Morita equivalent to the skew group algebra H ∗ G where
H = K⟨x, y⟩/([x, [x, y]], [y, [x, y]]) is the Heisenberg algebra in two variables. The fixed
subalgebra HG is Gorenstein. Applying a result by Amiot-Iyama-Reiten [1], we obtain our
version of algebraic McKay correspondences giving descriptions of the stable categories
of CM-modules over HG.

Theorem 2. We have the following two equivalences of triangulated categories: CMZHG ≃
Db(A(Q)), CMHG ≃ C2(A(Q)) where C2 denotes the 2-cluster category.
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In commutative ring theory, Knörrer’s periodicity theorem is a powerful tool to study
Cohen-Macaulay representation theory over hypersurfaces, and matrix factorizations are
essential ingredients to prove the theorem. In order to study noncommutative quadric hy-
persurfaces, which are major objects of study in noncommutative algebraic geometry, we
introduce a notion of noncommutative matrix factorization and prove the following non-
commutative graded versions of Eisenbud’s theorem [1] and Knörrer’s periodicity theorem
[2].

Theorem 1 ([3]). If S is a graded quotient algebra of a noetherian AS-regular alegebra,
f ∈ Sd is a homogeneous regular normal element of degree d > 0, and A = S/(f), then

NMFZ
S(f)/ add{(1, f)} ∼= TRZ

S(A)

NMFZ
S(f) := NMFZ

S(f)/ add{(1, f), (f, 1)} ∼= TRZ
S(A)/ add{A} =: TRZ

S(A)

where NMFZ
S(f) is the category of noncommutative graded matrix factorizations of f over

S, TRZ(A) is the category of finitely generated graded totally reflexive modules over A,
and TRZ

S(A) := {M ∈ TRZ(A) | pdS(M) < ∞}.

Theorem 2 ([4]). Assume that the base field is algebraically closed of characteristic not
2. Let S be a noetherian AS-regular algebra and f ∈ S2e a homogeneous regular normal
element of even degree 2e > 0. If there exists a graded algebra automorphism σ of S such
that af = fσ2(a) for every a ∈ S, then

TRZ(S/(f)) ∼= NMFZ
S(f)

∼= NMFZ
S[u;σ][v;σ](f + u2 + v2) ∼= TRZ(S[u;σ][v;σ]/(f + u2 + v2))

where S[u;σ][v;σ] is the Ore extension of S by σ with deg u = deg v = e.

If time permits, we discuss applications to noncommutative quadric hypersurfaces.
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Definition 1. We say that a subsheaf A of OX-algebras of Mn(OX) is a mold of degree
n on a scheme X if Mn(OX)/A is a locally free sheaf. We denote by rankA the rank of
A as a locally free sheaf.

Proposition 2. The following contravariant functor is representable by a closed sub-
scheme of the Grassmann scheme Grass(d, n2):

Moldn,d : (Sch)op → (Sets)
X 7→

{
A A is a mold of degree n on X with rankA = d

}
.

The following theorem is one of the main results.

Theorem 3 ([1]). Let S be a locally noetherian scheme. For a rank d mold A of degree
n on S, denote by τA : S → Moldn,d ⊗Z S the morphism induced by A. Set A(x) :=
A⊗OS

k(x) ⊆ Mn(k(x)), where k(x) is the residue field of a point x ∈ S. Put PGLn,S :=
PGLn⊗Z S. Let us define the S-morphism ϕA : PGLn,S → Moldn,d⊗Z S by P 7→ PAP−1.
Then ϕA is smooth if and only if H1(A(x),Mn(k(x))/A(x)) = 0 for each x ∈ S.

Let k be an algebraically closed field. There are 26 types of k-subalgebras of M3(k) up
to inner automorphisms of M3(k). For all types of k-subalgebras A of M3(k), we have
calculated Hochschild cohomology H i(A,Mn(k)/A). We introduce several results not only
for an algebraically closed field k but also for any commutative ring R.

Theorem 4 ([1]). Set N3(R) :=


 a b c

0 a d
0 0 a

 a, b, c, d ∈ R

 ⊂ M3(R) for a com-

mutative ring R. Then

H i(N3(R),M3(R)/N3(R)) =

{
R2 (i = 0)
Ri+1 (i > 0).

Theorem 5 ([1]). Set S4(R) :=


 a b c

0 a 0
0 0 a

 a, b, c ∈ R

 ⊂ M3(R) for a commu-

tative ring R. Then

H i(S4(R),M3(R)/S4(R)) =

{
R4 (i = 0)

R3·2i (i > 0).
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Let R be a commutative noetherian ring of finite Krull dimension. In the first half of
this talk, we give a new approach to reach the pure derived category of flat R-modules.
Motivated by Neeman [5], Murfet and Salarian [3] defined the pure deived category as
the Verdier quotient K(FlatR)/Kpac(FlatR) of the homotopy category of complexes of flat
R-modules by the subcategory of pure acyclic complexes. There is a general theory due
to Gillespie [1] that yields complete cotorsion pairs in the level of complexes, and it is
possible to deduce from his work that the pure derived category is triangulated equivalent
to the homotopy category K(FlCotR) of complexes of flat cotorsion modules, where we
say that an R-module M is cotorsion if Ext1R(F,M) = 0 for any flat R-module F .

On the other hand, our main tool is a Čech complex of functors introduced in the
previous work [4] with Yoji Yoshino. The Čech complex is constructed from localiza-
tions and completions with respect to prime ideals, and it yields a triangulated functor
K(FlatR) → K(FlCotR). We prove that this functor is a left adjoint to the inclusion
functor K(FlCotR) → K(FlatR), and this adjoint pair naturally induces the triangu-

lated equivalence K(FlatR)/Kpac(FlatR)
∼=−→ K(FlCotR). Moreover, using this fact, we

concretely illustrate correspondence between different stable categories.
In the second half of this talk, we provide a reasonable framework to study an infinite

version of Cohen-Macaulay representation theory. Following Holm [2], we say that an
R-module M is weak balanced big Cohen-Macaulay if any system of parameters of the
maximal ideal m is a weak regular sequence on M , where M/mM can be zero. If R
is a Gorenstein local ring, then the subcategory Kac(FlCotR) of acyclic complexes can
be identified with the stable category of weak balanced big Cohen-Macaulay cotorsion
modules modulo flat cotorsion modules. We explain that this stable category is suitable
to develop Puninski’s work [6].
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Nilpotent polynomials
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It is well known that the coefficients of nilpotent polynomials over noncommutative
rings generally are not all nilpotent. We show that this remains true even under extremely
strong restrictions on the set of nilpotents in the coefficient ring. If R is a ring and its set
of nilpotents, Nil(R), satisfies Nil(R)2 = 0, then in general Nil(R[x]) 6⊆ Nil(R)[x]. This is
proven by constructing an explicit polynomial example. The smallest possible degree of
such a polynomial is seven. Related problems are raised.
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We have studied about group algebras of non-noetherian groups and showed that they
are often primitive if base groups have non-abelian free subgroups. Our main method
was two edge-colored graph theory. In general our method using these graphs seems to
be effective for a group algebra of a group with a non-abelian free subgroup. But there
exist some non-Noetherian groups with no non-abelian free subgroups such as Thompson’s
group F. In this talk, we first introduce an application of (undirected) two edge-colored
graphs to group algebras of non-Noetherian groups and then improve our graph theory
in order to be able to investigate group algebras of Thompson’s group F. Finally, we
introduce an application our graph theory to a problem on group algebras of Thompson’s
group F.

Definition 1 (Thompson’s group F). We define Thompson’s group F as the group (under
composition) of thosehomeomorphisms of the interval [0, 1], which satisfy the following
conditions:
1. they are piecewise linear and orientation-preserving,
2. in the pieces where the maps are linear, the slope is always a power of 2, and
3. the breakpoints are dyadic, i.e., they belong to the set D×D, where D = [0, 2]∩Z[1

2
].

Thompson’s group F has a following presentation:

⟨x0, x1, x2, · · · xn, · · · , | x−1
i xjxi = xj+1, for i < j⟩.

In this talk, we consider the following property (P) on the group algebra KG of a group
G over a field K:

(P) There exist elements a, b ∈ KG \ {0} such that ax+ by ̸= 0 for any x, y ∈ KG \ {0}.

We can see that many group algebras of non-noetherian groups satisfy the property
(P) but have not known it on group algebras of Thompson’s group F yet. We introduce
a new approach to the problem.
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Recently, the notion of extriangulated category was introduced in [5] as a simultaneous
generalization of triangulated category and exact category. A typical example of extrian-
gulated categories is the cotorsion class of a cotorsion pair over a triangulated category.
Our first aim is to provide an analog of the following Gabriel-Quillen embedding theorem

for extriangulated categories. It shows that any skeletally small exact category C can be
embedded in the category Lex C of left exact functors from C to the category Ab of abelian
groups. More precisely, the canonical inclusion R : Lex C → Mod C admits a left adjoint
Q and hence we have a localization sequence:

KerQ // Mod C Q //
gg

Lex C.
R

ff

Moreover, the composed functor EC : C ↪→ Mod C Q−→ Lex C, which is called the Gabriel-
Quillen embedding functor, is exact and fully faithful. We show a “finitely presented”
version of the theorem for some extriangulated categories with weak-kernels, especially,
there exists a Gabriel-Quillen type functor EC : C → lex C, where lex C denotes the category
of the finitely presented left exact functors from C to Ab. Using the functor EC, we
provide necessary and sufficient conditions for an extriangulated category C to be exact
and abelian, respectively.
Our main result is an application for a cotorsion pair (U ,V) in a triangulated category

T . In [4, 1], it was proved that there exists an abelian category H associated to the co-
torsion pair, called the heart. This result was shown for two extremal cases [2, 3], namely,
t-structures and 2-cluster tilting subcategories. Since the cotorsion class U has a natural
extriangulated structure, we have the Gabriel-Quillen type functor EU : U → lexU . Our
result provides a good understanding for a construction of the heart, in particular, we
have an equivalence H ≃ lexU .
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Let R be a commutative ring with identity and (Γ,≤) a strictly ordered monoid. Let
R be a commutative ring with identity and (Γ,≤) a strictly ordered monoid. We denote
by [[RΓ,≤]] the set of all mappings f : Γ → R such that supp(f) := {α ∈ Γ | f(α) 6= 0}
is an artinian and narrow subset of Γ. With pointwise addition, [[RΓ,≤]] is an (additive)
abelian group. Moreover, for every α ∈ Γ and f, g ∈ [[RΓ,≤]], the set Xα(f, g) := {(β, γ) ∈
Γ× Γ |α = β + γ, f(β) 6= 0, and g(γ) 6= 0} is finite; so this allows to define the operation
of convolution:

(fg)(α) =
∑

(β,γ)∈Xα(f,g) f(β)g(γ).

Then [[RΓ,≤]] is a commutative ring (under these operations) with unit element e, namely
e(0) = 1 and e(α) = 0 for all α ∈ Γ∗, which is called the ring of generalized power series
of Γ over R, which is first introduced by P.Ribenboim.

Let D ⊆ E be an extension of commutative rings with identity, I a nonzero proper
ideal of D, (Γ,≤) a strictly ordered monoid, and Γ∗ = Γ \ {0}. Set D + [[EΓ∗,≤]] = {f ∈
[[EΓ,≤]] | f(0) ∈ D} and D + [[IΓ∗,≤]] = {f ∈ [[DΓ,≤]] | f(α) ∈ I for all α ∈ Γ∗}. Then
D ( D + [[IΓ∗,≤]] ( [[DΓ,≤]] ⊆ D + [[EΓ∗,≤]] ⊆ [[EΓ,≤]].

In this talk, we give some conditions for the rings D+[[EΓ∗,≤]] and D+[[IΓ∗,≤]] to satisfy
the ascending chain condition on principal ideals (ACCP) or Noetherian.
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A Poisson C-algebra R appears in classical mechanical system and its quantized algebra
appearing in quantum mechanical system is a C[[~]]-algebra Q = R[[~]] with star product
∗ such that for any a, b ∈ R ⊆ Q,

a ∗ b = ab+B1(a, b)~ +B2(a, b)~2 + . . .

subject to
{a, b} = ~−1(a ∗ b− b ∗ a)|~=0, · · · (∗∗)

where Bi : R× R −→ R are bilinear products. The given Poisson algebra R is recovered
from its quantized algebra Q by R = Q/~Q with Poisson bracket (∗∗), which is called its
semiclassical limit. But it seems that the star product in Q is complicate and that Q is
difficult to understand at an algebraic point of view since it is too big. For instance, if λ
is a nonzero element of C then ~−λ is a unit in Q and thus a so-called deformation of R,
Q/(~− λ)Q, is trivial. Hence it seems that we need an appropriate F-subalgebra A of Q
such that A contains all generators of Q, ~ ∈ A and A is understandable at an algebraic
point of view, where F is a subring of C[[~]].

Here we discuss how to find nontrivial deformations from quantized algebras and how
similar quantized algebras are to their semiclassical limits. Results are illustrated by
examples.
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This talk is based on a join work with Yuji Yoshino [4].
M.Auslander, S.Ding and Ø.Solberg [1] studied liftings and weak liftings of finitely gen-

erated modules over a commutative Noetherian algebra. Recently, S.Nasseh and S.Sather-
Wagstaff [2] and S.Nasseh and Y.Yoshino [3] extended them to the case of differential
graded (=DG) modules over differential graded (=DG) algebras.
Let A → B be a homomorphism of DG algebras over a commutative ring R. A DG B-

module N is said to be liftable to A if there is a DG A-module M such that N ∼= B⊗AM .
In this case, M is called a lifting of N to A.
We concern a lifting problem in the situation A → B where B = A⟨X|dX = t⟩ is an

extended DG R-algebra of A by the adjunction of a variable X which kills a cycle t in
A. The both papers [2, 3] treated the lifting problem or the weak lifting problem in such
cases but with the assumption that the degree of X is odd. In this case, B is a Koszul
complex over A.
In this talk, we study the lifting problem in the situation A → B = A⟨X|dX = t⟩ where

B is obtained from adding a variable X of even degree. It should be noted that underlying
graded algebra of B is a free algebra over A with a divided powers variable X. Let N be
a semi-free DG B-module. The aim of this talk is to construct an obstruction for liftings

of N to A as an element of Ext
|X|+1
B (N,N). To do this, we introduce a certain operator

on the set of graded R-linear endomorphisms EndR(N), which is called the j-operator.
The notion of the j-operator was first introduced by J.Tate in the paper [5]. We show
that N is liftable to A if and only if the obstruction of N vanishes. The following is our
main result of this talk.

Theorem 1. Let A be a DG R-algebra and B = A⟨X|dX = t⟩ be an extended DG R-
algebra of A by the adjunction of a variable X of even positive degree. Assume that a DG
B-module N is semi-free.

(1) If N is bounded below and Ext
|X|+1
B (N,N) = 0, then N is liftable to A.

(2) If N is liftable to A and Ext
|X|
B (N,N) = 0, then a lifting of N is unique up to DG

A-isomorphisms.
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THE STRUCTURE OF SALLY MODULES AND
NORMAL HILBERT COEFFICIENTS

KAZUHO OZEKI

This talk is based on a joint work with S. K. Masuti and M. E. Rossi, and H. L.

Truong.

The Sally module of an ideal is an important tool to interplay between Hilbert coeffi-

cients and the properties of the associated graded ring. In this talk we give new insights

on the structure of the Sally module. We apply these results characterizing the almost

minimal value of the first and the second normal Hilbert coefficients in an analytically

unramified Cohen-Macaulay local ring.

Let (R,m) be an analytically unramified Cohen-Macaulay local ring of dimension

d > 0 with infinite residue field R/m and I an m-primary ideal of R. Let I denote

the integral closure of I. Consider the so called normal filtration {In}n∈Z and we are

interested in the corresponding Hilbert-Samuel polynomial. It is well-known that there

are integers ei(I), called the normal Hilbert coefficients of I, such that for n ≫ 0

ℓR(R/In+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I).

Let us choose a parameter ideal J of R which forms a reduction of I. We set rJ(I) :=

min{r ≥ 0 | In+1 = JIn for all n ≥ r}.

Suppose that d ≥ 2. Then by [1] it is known that

e2(I) ≥ e1(I)− e0(I) + ℓR(R/I) ≥ ℓR(I2/JI)

hold true and if either of the inequalities is an equality, then rJ(I) ≤ 2, in particular

the associated graded ring G(I) =
⊕

n≥0 I
n/In+1 is Cohen-Macaulay. Thus the ideals

I with e1(I) = e0(I) − ℓR(R/I) + ℓR(I2/JI) and/or e2(I) = e1(I) − e0(I) + ℓR(R/I)

enjoy nice properties.

In this talk we present the structure of the Sally module in the case the first or

the second normal coefficient is almost minimal, that is the equality e1(I) = e0(I) −
ℓR(R/I) + ℓR(I2/JI) + 1 or e2(I) = e1(I)− e0(I) + ℓR(R/I) + 1 holds true. We present

in these cases the structure of the Sally module and, in particular, we investigate the

depth of associated graded ring G(I).

As the title outlines, an important tool in this talk is the Sally module introduced

by W. V. Vasconcelos [2]. The aim of this talk was to define a module in between
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the associated graded ring and the Rees algebra taking care of important information

coming from a minimal reduction. Actually, a more detailed information comes from

the graded parts of a suitable filtration {C(i)} of the Sally module that was introduced

by M. Vaz Pinto in [3]. In this talk we prove some important results on C(2) which

will be key ingredients for proving the main result. Some of them are stated in a very

general setting. Our hope is that these will be successfully applied to give new insights

to problems related to the normal Hilbert coefficients, for instance [1].
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The Construction of a Continuous Linear 

Representation From a 

Topological Group Into Topological Module Space 
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Let 𝜌c be a continuous homomorphism from a topological group G into GLc(V) of all 

continuous bijective transformations. Homomorphism 𝜌c like above is called a continuous 

linear representation from a topological group G into a topological vector space V. Because a 

module space is a vector space over a ring, not a field, we have construct a topological 

module space firstly.  In this paper, we will construct a continuous linear representation  from 

a topological group into a topological module space over principle ideal domain 

. 

Keywords: topological group, topological module space, continuous linear representation. 
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Noetherian-like properties in polynomial and power series rings
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There are several Noetherian-like properties, e.g., Noetherian spectrum, Laskerian,
strong-finite-type (SFT), piecewise Noetherian property. We investigate the stability of
such properties under polynomial and power series extensions. In particular, we show
that for a nonzero SFT prime ideal P of a Prüfer domain D, the following statements
are equivalent: (1) D[[X]]P [[X]] is Noetherian; (2) htP = 1 and k̄[[X]] = D̄[[X]]D̄\(0), where

D̄ = D/P and k̄ is the quotient field of D̄; (3) D[[X]]P [[X]] is a valuation domain. As a
corollary, we also show that for a Prüfer domain D, D[[X]] is piecewise Noetherian if and
only if D is Noetherian.
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A NOTE ON FI-SEMI INJECTIVE MODULES
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In this paper, the concept of FI−M−principally injective and FI−semi-injective (fully
invariant -semi injective) modules are introduce and establishes some important results.
Also investigate the characterizations of PP-ring and commutative semi-simple rings in
term of FI−semi-injective modules.
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This talk is based on a joint work with J. Brantner and A. Geroldinger. Let O be an
order in a quadratic number field. A proper nonzero ideal of O is called an ideal atom
if it is not the product of two proper ideals of O. It is well-known that every nonzero
ideal of O can be written as a finite product of ideal atoms. In this talk we investigate
the structure of product decompositions of ideals of orders in quadratic numbers fields
into ideal atoms. We discuss and determine several factorization theoretical invariants
of the monoid of ideals of O, like the elasticity, the unions of sets of lengths, the set of
catenary degrees and the delta set. Furthermore, we apply the aforementioned results to
characterize when the minimum of the delta set of O is bigger than one.
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Is Ware’s problem true or not ?
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R. Ware gave the following problem in his paper: Endomorphism rings of projective
modules, Trans. Amer. Math. Soc. 155 (1971), 233-256.

Problem: If a projective right R-module P has unique maximal submodule L, then
L is the largest maximal submodule of P .

In the paper, A. Facchini, D. Herbera, I. Sakhajev Finitely Generated Flat Modules and
a Characterization of Semiperfect Rings, Comm. in Algebra, Vol.31 No.9(2003), 4195–214
asserts this problem is negative by showing the following properties:

Let RU be auniserial R-module and S = EndR(U) an endomorphism ring of RU . Then
he following conditions are equivalent.

(1) US is not quasi-small.
(2) US is countable generated and a simple left R-module RR/K is flat and

∑
f∈K

f(US) =

US. Here K = {f ∈ S|f is not epimorphism}.
In this case, RK is an infinitely generated projective module with unique maximal sub-

module.
Here, US is called quasi-small if U ∼= T for a direct summand T of

⊕
i∈Γ

Mi, then there is

a finite subset ∆ ⊂ Γ such that T ⊂
⊕
i∈∆

Mi. We emark T is a direct summand of
⊕
i∈∆

Mi.

In this talk, we give some interesting example:
Example: Let F be a field Z a commutative F -algebra with bases {vx |0 < x ≤ 1} with
the multiplication vx · vy = vxy

which seems to be a counter example of the above properties.
Also we report Ware’s problem is true by using Nakayama-Azumaya Lemma for projective
modules.

Furter, we invesitage sturctures of a module with unique maximal submodule.

One structure theorem is:
Theorem: Let R be a ring and M a right R-module with unique maximal submodule

L. then M is indecomposable or M = M1 ⊕M2 such that
M1 has unique maximal submodule and M2 does not have any maximal submodules.
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Q-graded Hopf quasigroups

Guodong Shi Shuanhong Wang∗

School of Mathematics, Southeast University

Nanjing, Jiangsu 210096, P. R. of China

Abstract. Firstly, we introduce a class of new algebraic systems which
generalize Hopf quasigroups and Hopf π−algebras called Q-graded
Hopf quasigroups, and research some properties of them. Secondly, we
define the representations of Q-graded Hopf quasigroups, i.e Q-graded
Hopf quasimodules, research the construction method and fundamental
theorem of them. Thirdly, we research the smash products of Q-graded
Hopf quasigroups.
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When is a quasi-discrete module quasi-projective?
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In this talk, we firstly introduce the concept “d-square full” modules related to “d-
square free” modules. A module M is called d-square free if, whenever its factor module
is isomorphic to N2 = N ⊕N for some module N , then N = 0 ([1], [2] (cf.[3])). A module
M is called d-square full if, for any proper submodule X of M , there exist a proper
submodule Y of M with X ⊆ Y and an epimorphism f : M → (M/Y )2. Secondly, we
show some basic properties of these modules. Finally, using the concept and results, we
consider the problem “when is a quasi-discrete module quasi-projective?”
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KAORI SHIMADA
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This is a joint work with Ryo Takahashi (Nagoya University, Kansas University).

1. Introduction

Rouquier [5] has introduced the notion of the dimension of a triangulated category. As
an analogue for abelian categories, Dao and Takahashi [2, 3] have introduced the notions
of the dimension and radius of a full subcategory of an abelian category with enough
projective objects. Our purpose of this talk is studying the dimension and radius of a full
subcategory of the category of finitely generated modules over a commutative noetherian
ring, and the dimension of the singularity category of a commutative noetherian ring.
For a noetherian ring R we denote by Dsg(R) the singularity category of R, i.e., the

Verdier quotient of the bounded derived category of modR by perfect complexes. Our
main result yields the following corollary, which gives rise to an inequality of the dimen-
sions of the singularity categories of 1-dimensional hypersurfaces. This corollary refines a
recent result of Kawasaki, Nakamura and Shimada [4, Theorem 4.5], which assumes that
the elements x1, . . . , xn are powers of distinct prime elements and that the local ring S is
complete.

Corollary 1. Let S be a regular local ring of dimension two and x1, . . . , xn ∈ S. Then
one has

dimDsg(S/(x1 · · · xn)) ≤ sup
1≤i≤n

{dimDsg(S/(xi))}+ 1.

In particular, if S/(xi) has finite CM-representation type for 1 ≤ i ≤ n, then

dimDsg(S/(x1 · · · xn)) ≤ 1.
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Action functor formalism
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Given a monoidal category C = (C,⊗, 1), we denote its Drinfeld center by Z(C). If the
forgetful functor U : Z(C) → C admits a right adjoint, say R, then the adjoint object of C
is defined by AC := UR(1). Our main concern is the case where C is a finite tensor category
in the sense of Etingof-Ostrik [1]. Some fundamental results on finite-dimensional Hopf
algebras have been extended to the setting of finite tensor categories by using the adjoint
object and the adjunction U ⊣ R [3, 4]. Here a naive question arises: Why is the adjoint
object useful for this kind of problems? As the adjoint object is defined in terms of the
tensor product of C, there is no obvious reason why it relates to somewhat ring-theoretic
or representation-theoretic problems.
In this talk, I introduce an abstract framework connecting the adjoint object and several

ring-theoretic notions and review how results on Hopf algebras are extended to the setting
of finite tensor categories. Let C be a finite tensor category. A key ingredient is the ‘action’
functor ρ : C → Rex(C) defined by ρ(X) = X⊗ (−), where Rex(C) is the category of right
exact linear endofunctors on C. It turns out that ρ has a right adjoint, say ρra, and the
adjoint object AC is isomorphic to ρra(idC). If we pick an arbitrary algebra L such that
C ≈ L-mod, then Rex(C) ≈ L-bimod. Some ring-theoretic notions can be formulated in
terms of the category of bimodules. If a ring-theoretic notion which we aim to investigate
has such a description, then one can transport it to the category C through the equivalence
L-bimod ≈ Rex(C) and the functor ρra : Rex(C) → C. This allows us to discuss relations
between the notion and the adjoint object.
As explained in [5], this formalism has a lot of applications. For example, Ext•C(1, AC)

is shown to be isomorphic to the Hochschild cohomology HH•(L). Noteworthy, this result
extends the SL2(Z)-action on the Hochschild cohomology of a ribbon factorisable Hopf
algebra to the setting of non-semisimple modular tensor categories. Under the assumption
that the double dual functor on C is isomorphic to the identity functor, Ext•C(AC, 1) is
shown to be dual to Hochschild homology HH•(L) by a similar argument and an abstract
treatment of the Nakayama functor established in [2]. Thus, under the same assumption,
HomC(AC, 1) is isomorphic to the space of symmetric linear forms on L. I will show further
applications of this kind of techniques. If time permits, I will talk about a generalization
to modules over a finite tensor category.
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ELLIPTIC ALGEBRAS
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Ongoing work with Alex Chirvasitu (SUNY, Buffalo) and Ryo Kanda (Osaka).
This talk concerns the elliptic algebras Qn,k(E, τ) defined by Odesskii and Feigin in

1989. Each Qn,k(E, τ) is a connected graded C-algebra, usually not commutative, de-
pending on a pair of relatively prime integers n > k ≥ 1, an elliptic curve E = C/Λ, and
a translation automorphism z 7→ z + τ of E. At first glance, its definition as the free
algebra C〈x0, . . . , xn−1〉 modulo the n2 relations∑

r∈Zn

θj−i+r(k−1)(0)

θj−i−r(−τ)θkr(τ)
xj−rxi+r (i, j) ∈ Z2

n

reveals nothing. Here the θα(z), α ∈ Zn, are theta functions of order n that are quasi-
periodic with respect to the lattice Λ. For a fixed (n, k, E) the Qn,k(E, τ)’s form a flat
family of deformations of the polynomial ring C[x0, . . . , xn−1]. They are Koszul algebras so
their Koszul duals form a flat family of finite dimensional algebras that are deformations
of the exterior algebra ∧(Cn). In a sequence of fascinating papers Feigin and Odesskii
proved and claimed that the Qn,k(E, τ)’s have a number of remarkable properties. The
ingredients that appear in the study of these algebras indicate the richness of the subject:

- the quantum Yang-Baxter equation with spectral parameter;
- the negative continued fraction expansion for n

k
;

- a distinguished invertible sheaf Ln/k on Eg = E × · · · × E, where g is the length
of the continued fraction;

- the Fourier-Mukai transform Rpr1∗(Ln/k ⊗L pr∗g( · )) is an auto-equivalence of the

bounded derived category Db(coh(E)) that provides a bijection E(1, 0) → E(k, n)
where E(r, d) is the set of isomorphism classes of indecomposable bundles of rank
r and degree d on E;

- identities for theta functions in one and in g variables;
- the variety Xn/k defined as the image of the morphism |Ln/k| : Eg → Pn−1 =
P(H0(Eg,Ln/k)∗), and an automorphism σ : Xn/k → Xn/k defined in terms of τ
and the continued fraction;

- Xn/k
∼= Eg/Σn/k, the quotient modulo the action of a subgroup of the symmetric

group Σg+1 defined in terms of the location of the 2’s in the continued fraction;
- a homomorphismQn,k(E, τ)→ B(Xn/k, σ,Ln/k) = B(Eg, σ,Ln/k)Σn/k whereB(·, ·, ·)

is a twisted homogeneous coordinate ring à la Artin-Tate-Van den Bergh;
- when Xn/k is Eg, an adjoint triple of functors i∗ a i∗ a i! where i∗ : Qcoh(Eg) →

QGr(Qn,k(E, τ)) plays the role of a direct image functor for a morphism Eg →
Projnc(Qn,k(E, τ)) in the sense of non-commutative algebraic geometry;

- a similar result when Xn/k is the symmetric power SgE;

The algebras Qn,1(E, τ) when n = 3, 4 are the 3- and 4-dimensional Sklyanin algebras
discovered by Artin-Schelter (1986) and Sklyanin (1982) and studied by Artin-Tate-Van
den Bergh and Smith-Stafford and Levasseur-Smith. For n ≥ 5, a lot is known about
Qn,1(E, τ) due to work of Tate-Van den Bergh and Staniszkis.
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POSITIVELY GRADED RINGS ARE MAXIMAL ORDERS
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Let R = ⊕n∈Z0Rn be a positively graded ring which is a sub-ring of strongly graded ring
of type Z, where R0 is a Noetherian prime rings. We define a concept of Z0−invariant
maximal order and show that R is a maximal order if and only if R0 is a Z0−invariant
maximal order. If R is a maximal order, then we completely describe all v−invertible
ideals. As an application, we show that R is a generalized Dedekind prime if and anly if
R0 is a Z0−invariant generalized Dedekind prime rings. We give example of Z0−invariant
generalized Dedekind prime rings but neither generalized Dedekind prime rings nor max-
imal orders.
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Constructions of rejective chains
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Let C be a Krull–Schmidt category. In [2], a chain C = C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0 of
subcategories of C is called a total right rejective chain if the following conditions hold:

(a) Ci is a right rejective subcategory of C;
(b) the Jacobson radical of the factor category Ci−1/[Ci] is zero.
In this talk, we give various examples of total right rejective chains. It is known

that total right rejective chains are deeply related right-strongly quasi-hereditary algebras
which are a special class of quasi-hereditary algebras introduced by Ringel [3].

Proposition 1 ([4, Theorem 3.22]). Let A be an artin algebra. Then A is right-strongly
quasi-hereditary if and only if the category projA has a total right rejective chain

The following theorem is one of main results of this talk. One is a refinement of [1,
Proposition 1.6], and the other is a refinement of [1, Proposition 2.3] and [5, Proposition
3.1].

Theorem 2. Let A be an artin algebra. If A is a locally hereditary algebra or a Nakayama
algebra with heredity ideal, then the category projA admits a total right rejective chain. In
particular, the following statements hold.

(1) If A is a locally hereditary algebra, then A is right-strongly quasi-hereditary.
(2) Let A be a Nakayama algebra. Then A is a right-strongly quasi-hereditary algebra

if and only if there exists a heredity ideal of A.

Next, we study ∆-good module category F(∆) using rejective chains. In [6], it is shown
that if the category F(∆) over a quasi-hereditary algebra A has an additive generator M ,
then the endomorphism algebra EndA(M) is quasi-hereditary. Motivated by this result,
we give the following proposition.

Proposition 3. Let A be a quasi-hereditary algebra and F(∆) the ∆-good module cat-
egory. Assume that F(∆) has an additive generator M and multiplicity-free. Then the
category F(∆) admits a total right rejective chain. In particular, the endomorphism al-
gebra EndA(M) is a right-strongly quasi-hereditary algebra.
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Septimiu Crivei and Derya Keskin Tütüncü
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The classical Baer-Kaplansky theorem states that any two torsion abelian groups having
isomorphic endomorphism rings are isomorphic. An interesting topic of research has been
to find other classes of abelian groups, and more generally, of modules, for which a Baer-
Kaplansky-type theorem is still true. Such classes have been called Baer-Kaplanksy classes
by Ivanov and Vámos [1].

Let C be a preadditive category and let M be a class of objects of C. Following
Ivanov and Vámos [1], M is called a Baer-Kaplansky class if for any two objects M
and N of M such that EndC(M) ∼= EndC(N) (as rings), one has M ∼= N . In this
work we use functor categories techniques in order to relate Baer-Kaplansky classes in
Grothendieck categories to Baer-Kaplansky classes in finitely accessible additive categories
(in particular, the category of torsion-free abelian groups), exactly definable additive
categories (in particular, the category of divisible abelian groups) and categories σ[M ] (in
particular, the category of comodules over a coalgebra over a field).

Theorem 1. Let C be a finitely accessible (an exactly definable) additive category. Let
X and Y be objects of C such that X has a direct sum decomposition into indecomposable
subobjects and there exists an IP -isomorphism Φ : EndC(X) → EndC(Y ). If one of the
following conditions holds:

1. Y/X is pure-projective;
2. X is pure-injective;

then X and Y are isomorphic.

Theorem 2. Let C be a Krull-Schmidt finitely accessible (pure semisimple exactly defin-
able) additive category. Then the class of finitely presented objects of C is Baer-Kaplansky
if and only if the class of finitely presented indecomposable objects of C is Baer-Kaplansky.

Theorem 3. Let R be a ring with identity and let M be a pure semisimple left R-module.
Then the class of finitely presented objects of σ[M ] is Baer-Kaplansky if and only if the
class of (finitely presented) indecomposable objects of σ[M ] is Baer-Kaplansky.

References
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Knörrer’s periodicity for skew quadric hypersurfaces
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It is well-known that A is the homogeneous coordinate ring of a smooth quadric hy-
persurface in Pn−1 if and only if A ∼= k[x1, . . . , xn]/(x

2
1 + · · · + x2

n). Applying the graded
Knörrer’s periodicity theorem, we have

CMZ(A) ∼=

{
CMZ(k[x1]/(x

2
1))

∼= Db(mod k) if n is odd,

CMZ(k[x1, x2]/(x
2
1 + x2

2))
∼= Db(mod k2) if n is even.

In this talk, we study a skew version of this equivalence.
Let S = k⟨x1, . . . , xn⟩/(xixj − εijxjxi) be a (±1)-skew polynomial algebra generated in

degree 1 where εii = 1, εij = εji = ±1. Then f = x2
1 + · · ·+ x2

n is a homogeneous regular
central element in S, so A = S/(f) is an example of a homogeneous coordinate ring of
a noncommutative quadric hypersurface in the sense of [2]. In this talk, we introduce
graphical methods to compute CMZ(S/(f)). To do this, we associate each (±1)-skew
polynomial algebra S with a certain graph G. We present the four operations, called
mutation, relative mutation, Knörrer reduction, and two points reduction for G, and
show that they are powerful in computing CMZ(S/(f)). In fact, by using these four
graphical methods, we can completely compute CMZ(S/(f)) up to n ≤ 6. As a result, in

the case n ≤ 6, we see CMZ(S/(f)) is equivalent to one of Db(mod k2i) where 0 ≤ i ≤ 5.
Moreover we also see that if n ≤ 6, then the structure of CMZ(S/(f)) is determined by
the number of irreducible components of the point scheme of S that are isomorphic to P1.
(From this it follows that the conjecture proposed in [3] holds true for n ≤ 6.)
This talk is based on the results of [1].
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In the 1980s, Buchweitz [1] introduced the notion of singularity category in order to
provide a framework for Tate cohomology of Gorenstein algebras. Recently, under this
framework, Wang [3] has defined the r-th Tate-Hochschild cohomology group of a Noe-
therian algebra A over a field k as

ExtrA⊗kAop(A,A) := HomDsg(A⊗kAop)(A,A[r]),

where r ∈ Z and Dsg(A⊗kA
op) is the singularity category of A⊗kA

op. He also discovered
a Gerstenhaber structure on the Tate-Hochschild cohomology ring

Ext•A⊗kAop(A,A) :=
⊕
r∈Z

ExtrA⊗kAop(A,A).

In 1957, Nakayama [2] introduced the complete cohomology groups ĤH
∗
(A,A) of a

Frobenius algebra A over a field k, which is analogous to Tate cohomology of a finite group.
It is known that the complete cohomology is isomorphic to the Tate-Hochschild cohomol-
ogy. Wang [3] proved that there is a graded commutative product ?, called ?-product,
on the complete cohomology such that the complete cohomology ring is isomorphic to
Tate-Hochschild cohomology ring. Moreover, he showed that the complete cohomology
ring of a symmetric algebra has a Batalin-Vilkovisky (BV) structure by using Tradler’s
BV differential and Connes operator. In particular, the BV differential generates the
Gerstenhaber bracket on the Tate-Hochschild cohomology.

In this talk, we explain how to construct a BV structure on the complete cohomology
of a Frobenius algebra whose Nakayama automorphism is diagonalizable.
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We introduce the notion of G-Dedekind modules, as the generalization of Dedekind
modules. A module M is called a generalized Dedekind module (a G-Dedekind module
for short) if any v-submodule of M is invertible. Let D be a Noetherian G-Dedekind do-
main and M a G-Dedekind D-module. We denote as M [x] the polynomial D[x]-module
in an indeterminate x and K(x) the quotient field of K[x], which is the quotient ring of
D[x]. We show that M [x] is a also a G-Dedekind D[x]-module.
Keywords : G-Dedekind modules, G-Dedekind domains, polynomial modules, invertible
submodules.
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Boolean Graphs - A Survey
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Abstract

A Boolean graph is the zero divisor graph of a Boolean ring. For a positive

integer n, let [n] = {1, 2, . . . , n}, and 2[n] the power set of [n]. A finite Boolean

graph Bn is isomorphic to a graph defined on the vertex set 2[n] r {[n], ∅}, where

two vertices are adjacent if and only if their meet is empty. In this paper, we give

a survey of some works done in the area of research related to Boolean graphs, in

both graph theoretic and algebraic aspects. We also introduce some most recent

works by the author and others.
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The classification of Leibniz conformal algebras of rank three
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Abstract: Leibniz conformal algebras of rank one are either Virasoro Lie conformal
algebras or abelian Lie conformal algebras. The classification of Lie conformal algebras
of rank two had been completed. In this talk, I will introduce some progress on the
classification of Leibniz conformal algebras of rank three.
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This is a report from joint work with A. Skowroński, [1] [2].
By an algebra we mean a basic, connected, finite-dimensional associative algebra with

identity over a field K. For an algebra A, we consider finite-dimensional right A-modules,
and denote by modA the category of finite-dimensional right A-modules.

An algebra A is called selfinjective if A is injective in modA, and then soc(A) :=
soc(AA) = soc(AA). Selfinjective algebras A and A′ are said to be socle equivalent if the
quotient algebras A/ soc(A) and A′/ soc(A′) are isomorphic, in this case, A is also called
a socle deformation of A′.

Let B̂ be the repetitive algebra of an algebra B, which is an infinite dimensional K-
algebra with

⊕
i∈Z(B ⊕ D(B)) as a K-vector space, where D(B) = HomK(B,K). For

some group G of automorphisms of B̂ regarded as a K-category, we have the category

B̂/G whose objects are by definition all G-orbits of objects of B̂, and B̂/G as an al-
gebra is finite dimensional selfinjective, called an orbit algebra of B. Important classes

of socle deformations A of a selfinjective orbit algebra B̂/G are of finite representation
type (C. Riedtmann, 1980-83) and of polynomial growth (A, Skowroński, 1989) over an
algebraically closed field K, in those cases B may be chosen as an algebra of finite global
dimension and G an infinite cyclic group. In fact, B is a quasi-tilted algebra (more
precisely, a tilted algebra for A of representation-finite or representation-domestic type
(special case of polynomial growth)).

Problem: Determine the selfinjective algebras A over a filed K socle equivalent to an

orbit algebra B̂/G of an algebra B of finite global dimension and G an infinite cyclic
group.

It should be noted that the problem asserts that the study of selfinjective algebras
A determined in the problem may be reduced to the study of algebras B of finite global
dimension, and it seems to be difficult even in the case of representation-finite selfinjective
algebras over a (not necessarily algebraically closed) field.

In my talk, in view of the above facts by Riedtmann and Skowroń’ski, we consider
the case where B is a tilted algebra and G is a cyclic group generated by an automor-
phism of the form ϕνB̂ where νB̂ and ϕ are the Nakayama and a positive automprphisms
respectively, and a solution to the case and applications are explained.
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In representation theory of algebras, derived category and stable category are two
major classes of triangulated categories. It has been shown by many researchers that
those different kinds of triangulated categories are related in various cases.
Happel [2] established the following relationship. For a finite dimensional algebra Λ

over a field, one has a trivial extension T(Λ) = Λ⊕D(Λ). T(Λ) is a graded self-injective
algebra, and so the stable category modZT(Λ) of Z-graded T(Λ)-modules has a structure
of triangulated category. In this setting, he constructed a fully faithful functor

H : Db(modΛ) → modZT(Λ).

He also showed that H gives an equivalence precisely when gl.dimΛ < ∞.
This functor H can be generalized as follows. We start from a finitely graded Iwanaga-

Gorenstein algebra A, and replace modZT(Λ) with the stable category CMZA of Z-graded
Cohen-Macaulay A-modules. Also we replace Λ with the Beilinson algebra ∇A of A. Then
there is a functor

H : Db(mod∇A) → CMZ A.

Note that this is not fully faithful in general.
In my talk, we study when this functor H is fully faithful or gives an equivalence. For

this purpose, we introduce homologically well-graded Iwanaga-Gorenstein algebra, which
can be characterized as a finitely graded algebra posses a homological symmetry. Our
main result is that this class of algebras is precisely the class of finitely graded Iwanaga-
Gorenstein algebras A that H is fully faithful. We also identify the class that H gives an
equivalence. Our results recover some of results shown in previous works [1, 2, 3].
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Let R be a commutative Noetherian ring and let K(R) be the homotopy category of all
complexes of finitely generated projective modules over R. For any X ∈ K(R) the R-dual
complex X∗ = HomR(X,R) is defined and the operation (−)∗ gives the duality on K(R).
The main theorem of this talk is the following:
Main Theorem [2] Let X ∈ K(R) and assume that R is a generically Gorenstein ring.
Then, X is acyclic if and only if X∗ is acyclic.
Recall that R is called a generically Gorenstein ring if the total ring of quotients is

Gorenstein. This theorem includes the Tachikawa conjecture and the dependence of totally
reflexivity conditions for modules over a generically Gorenstein ring.
To prove this theorem we need to develop and establish the Auslander-Bridger type

theory for K(R). Precisely speaking, we have a natural mapping ρiX,R : H−i(X∗) →
H i(X)∗ for X ∈ K(R) and i ∈ Z. We say that a complex X ∈ K(R) is *torsion-free
(resp. *reflexive ) if ρiX,R are injective (resp. bijective) mappings for all i ∈ Z. Let
Add(R) be the additive full subcategory of K(R) consisting of all split complexes. We
can show that Add(R) is functorially finite in K(R) and hence every complex in K(R) is
resolved by complexes in Add(R). Define K(R) to be the factor category K(R)/Add(R).

Then we are able to define the syzygy functor Ω and the cosyzygy functor Ω−1 on K(R),

and as a result we have an adjoint pair (Ω−1,Ω) of functors. Then we can show that X
is *torsion-free iff X ∼= Ω−1ΩX in K(R). And under the assumption that R is generically

Gorenstein, X is *reflexive iff X ∼= Ω−2Ω2X in K(R).
There is a triangles of the form

∆(n,0)(X) → Ω−nΩn(X) → X → ∆(n,0)(X)[1],

for X ∈ K(R) and n > 0, where ∆(n,0)(X) has a finite Add(R)-resolution of length at
most n− 1. This is one of the key theorems in order to prove Main Theorem. The second
key observation is that any syzygy complex ΩrX (∀r > 0) is *torsion-free if H(X∗) = 0.
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This talk is based on [2]. Let A be a finite dimensional algebra over a field k. Adachi-
Iyama-Reiten introduced τ -tilting theory which is generalization of tilting theory from
the viewpoint of mutation. We denote

• sτ -tiltA = {isomorphism classes of basic support τ -tilting A-modules},
• sτ -tilt+A ⊆ sτ -tiltA consists of mutation equivalence classes containing A,
• sτ -tilt−A ⊆ sτ -tiltA —————————————————————— 0.

Problem. sτ -tiltA \ (sτ -tilt+A ∪ sτ -tilt−A) = ?.

In this talk, we consider the Jacobian algebras defined from triangulated surfaces.

• (S,M) : a connected compact oriented Riemann surface with marked points.
• QT : a quiver associated with a triangulation T of (S,M).
• W : a non-degenerate potential of QT such that the associated Jacobian algebra
J = J(QT ,W ) is finite dimensional.

Remark 1. For the cluster algebra A(QT ) associated with QT , there are bijections

sτ -tilt+ J ↔ {clusters in A(QT )} ↔ {tagged triangulations of (S,M)},
where if (S,M) is a closed surface with exactly one puncture, then tags are plain.

We give an answer of Problem for A = J .

Theorem 2. We have sτ -tilt J = sτ -tilt+ J ∪ sτ -tilt− J . More precisely, if (S,M) is a
closed surface with exactly one puncture, then sτ -tilt J = sτ -tilt+ J tsτ -tilt− J ; otherwise,
sτ -tilt J = sτ -tilt+ J = sτ -tilt− J .

The key ingredient to prove Theorem 2 is an invariant, called g-vector cone, of τ -tilting
modules. The g-vector cone of a τ -tilting module M is a cone CJ(M) in K0(J) ⊗Z R,
where K0(J) is the Grothendieck group of J . They have the following property.

Theorem 3. [1, Theorem 2.4] Any g-vector cone is of full-dimensional.

The following is the main result in [2].

Theorem 4. We have ⋃
M∈sτ -tilt+ J∪sτ -tilt− J

CJ(M) = K0(J)⊗Z R .

Theorem 2 immediately follows from Theorems 3 and 4.
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GORENSTEIN-PROJECTIVE

AND SEMI-GORENSTEIN-PROJECTIVE MODULES

PU ZHANG

Abstract. Let A be an artin algebra. An A-module M will be said to be semi-Gorenstein-projective

provided that Exti(M,A) = 0 for all i ≥ 1. All Gorenstein-projective modules are semi-Gorenstein-

projective and only few and quite complicated examples of semi-Gorenstein-projective modules which

are not Gorenstein-projective have been known. One of the aims of this talk is to provide conditions

on A such that all semi-Gorenstein-projective left modules are Gorenstein-projective (such an algebra

is called left weakly Gorenstein). In particular, in case there are only finitely many isomorphism

classes of indecomposable left modules which are both semi-Gorenstein-projective and torsionless,

then A is left weakly Gorenstein. This combines the thoughts of Y. Yoshino and R. Marczinzik. On

the other hand, we exhibit a 6-dimensional algebra Λ with a semi-Gorenstein-projective module M

which is not torsionless (thus not Gorenstein-projective). Actually, also the Λ-dual module M∗ is

semi-Gorenstein-projective. In this way, we show the independence of the total reflexivity conditions

of L. L. Avramov and A. Martsinkovsky, thus completing a partial proof by D. A. Jorgensen and L.

M. Şega. Since all the syzygy-modules of M and M∗ are 3-dimensional, the example can be checked

(and visualized) quite easily.

This talk is based on a joint work with Claus Michael Ringel.
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For a finite dimensional algebra Λ and a non-negative integer n, we characterize when
the set tiltnΛ of additive equivalence classes of tilting modules with projective dimension
at most n has a minimal (or equivalently, minimum) element. This generalize results
of Happel-Unger. Moreover, for an n-Gorenstein algebra Λ with n ≥ 1, we construct a
minimal element in tiltnΛ. As a result, we give equivalent conditions for a k-Gorenstein
algebra to be Iwanaga-Gorenstein. Moreover, for an 1-Gorenstein algebra Λ and its factor
algebra Γ = Λ/(e), we show that there is a bijection between tilt1Λ and the set sttiltΓ of
isomorphism classes of basic support τ -tilting Γ-modules, where e is an idempotent such
that eΛ is the additive generator of projective-injective Λ-modules. This is a joint work
with Osamu Iyama.
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SEMIBRICKS, WIDE SUBCATEGORIES AND
RECOLLEMENTS
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The notion of (semi)bricks, regarded as a generalization of (semi)simple modules, which
correspond bijectively to wide subcategories, appeared in a paper of Ringel in 1976. In re-
cently years, there has been several new developments motivated by links to τ -tilting theo-
ry studied by Asai. In this talk, we mainly apply the gluing techniques for (semi)bricks and
reduction techniques for wide subcategories along a recollement introduced by Beilinson-
Bernstein-Deligne. Gluing support τ -tilting modules through a formula(perhaps compat-
ible with gluing semibricks, t-structures, co-t-structures, silting objects) is left open.
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spaces, I (Luminy, 1981), 5–171, Astérisque, 100, Soc. Math. France, Paris, 1982.
6. Q. H. Chen and Y. N. Lin, Recollements of extension algebras, Sci China Ser A, 2003, 46: 530-537.
7. L. Demonet, O. Iyama, N. Reading, I. Reiten and H. Thomas, Lattice theory of torsion classes, in

preparation.
8. V. Franjou and T. Pirashvili, Comparison of abelian categories recollements, Doc. Math. (2004)9,

41-56.
9. D, Happel, Partial tilting modules and recollement, in: Proceedings of the International Conference

on Algebra, Part 2, Novosibirsk, 1989, in: Contemp. Math, vol. 131, Amer. Math. Soc, Providence,
RI, 1992, 345-361.

10. M. Hovey, Classifying subcategories of modules, Tran. Amer. Math. Soc. 353(8)(2001): 3181-3191.
11. C. Ingalls and H. Thomas, Noncrossing partitions and representations of quivers, Compos. Math.

Vol. 145, 6(2009): 1533-1562.
12. G. Jasso, Reduction of τ -tilting modules and torsion pairs, Int. Math. Res. Not. IMRN 16(2015):

7190-7237.
13. A. King, Moduli of representations of finite-dimensional algebras, Q. J. Math. 45, 4(1994): 515-530.
14. Z. Q. Lin and Y. N. Lin, One-point extension and recollement, Sci China Ser A, 2008, 51: 376-382.
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DIRECTED PARTIAL ORDERS OVER

NON-ARCHIMEDEAN FIELDS

Yuehui Zhang(Shanghai Jiao Tong University)

Abstract. Let F be a non-archimedean linearly ordered field, and C = F+F
√
−1. In

this talk, we classify all directed partial orders on C with 1 > 0 via bounded semigroups

of F+ and those with 1 6> 0 via special convex subsets of F+. We note that none of these

directed partial orders is a lattice order on C, which gives the Birkhoff-Pierce problem

a negative answer in this case.(Joint with Jingjing Ma and liusan Wu)
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Let R be a commutative ring with identity and let Q be the set of finitely gener-
ated semiregular ideals of R. A Q-torsion-free R-module M is called a Lucas module if
Ext1

R
(R/J, M) = 0 for any J ∈ Q. And R is called a DQ-ring if every ideal of R is a Lucas

module. It is proved that if the small finitistic dimension of R is zero, then R is a DQ
ring. In terms of a trivial extension, we construct a total ring of quotients R = D ∝ H
which is not a DQ ring. Thus in this case, the small finitistic dimension of R is not zero.
Then this fact gives a negative answer to an open problem posed by Cahen et al..
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The structure of connected (graded) Hopf algebras
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In this talk, we will present a structure theorem for connected graded Hopf algebras over
a field of characteristic 0 by claiming the existence of a family of homogeneous generators
and a total order on the index set that satisfy some excellent conditions. The approach
to the structure theorem is constructive based on the combinatorial properties of Lyndon
words and the standard bracketing on words. As consequences of the structure theorem,
we will show that connected graded Hopf algebras of finite Gelfand-Kirillov dimension
over a field of characteristic 0 are all iterated Hopf Ore extensions of the base field as well
as some keystone facts of connected Hopf algebras over a field of characteristic 0.
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Quaternion in the real number domain was first proposed in 1843 by Hamilton, whose
purpose was to find a way to study spatial geometry similar to complex number in solv-
ing plane problems [1]. As a famous example, quaternion plays an important role in the
ring theory. Many experts and scholars have studied the theory and related properties of
quaternion ring [2, 3]. Due to its unique properties and advantages [4], quaternion ring
theory has potential application prospects in many fields [5].

In the field of nonlinear dynamics, further reduction of normal form or hypernormal
form (unique normal form, simplest normal form) has become one of the most important
topics [6, 7]. However, there are still very few results for further reduction of normal forms
for higher dimensional systems. One of the main difficulties is that the matrices in the
computation of normal forms are usually very large and which makes the computation
very difficult. In this paper, we present a new method of expressing and simplifying high
dimensional nonlinear dynamical systems by introducing the quaternion ring theory, and
investigate the hypernormal form of a 4 dimensional semi-simple nonlinear dynamical sys-
tem. The main technique used to the computation is the combination of a new grading
function and multiple Lie brackets. The introduction of quaternion ring theory helps to
reduce the computation of large size matrices in the study of hypernormal forms.

The research project is supported by National Natural Science Foundation of China
(11772007, 11372014, 11802200) and also supported by Beijing Natural Science Founda-
tion (1172002, Z180005).
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Structures of Irreducible Yetter-Drinfeld Modules over
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(This is a joint work with Dr. Liu Zhimin)
Let (H,R) be a finite dimensional semisimple and cosemisimple quasi-triangular

Hopf algebra over a field k. In this talk, by using the Majid’s transmuted braided group
of H and Ostrik’s theorem on characterizing module categories over monoidal categories,
we present a structure theorem of irreducible objects of the Yetter-Drinfeld H-module
category.

Our structure theorem generalizes the results of Dijkgraaf-Pasquier-Roche and
Gould on Yetter-Drinfeld modules over finite group algebras.

References

[1] N. Andruskiewitsch and J. M. Mombelli. On module categories over finite-dimensional Hopf algebras.
J. Algebra, 314(1):383–418, 2007.

[2] R. Dijkgraaf, V. Pasquier, and P. Roche. Quasi Hopf algebras, group cohomology and orbifold
models. Nuclear Phys. B Proc. Suppl., 18B:60–72 (1991), 1990. Recent advances in field theory
(Annecy-le-Vieux, 1990).

[3] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume 205 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.

[4] M. D. Gould. Quantum double finite group algebras and their representations. Bull. Austral. Math.
Soc., 48(2):275–301, 1993.

[5] S. Majid. Braided groups and algebraic quantum field theories. Lett. Math. Phys., 22(3):167–175,
1991.

[6] A. Masuoka. Semisimple Hopf algebras of dimension 6, 8. Israel J. Math., 92(1-3):361–373, 1995.
[7] V. Ostrik. Module categories, weak Hopf algebras and modular invariants. Transform. Groups,

8(2):177–206, 2003.
[8] H.-X. Zhu. Relative Yetter-Drinfeld modules and comodules over braided groups. J. Math. Phys.,

56(4):041706, 11, 2015.

2010 Mathematics Subject Classification. .

107

96.



Lie solvability in matrix algebras
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If an algebra A satisfies the polynomial identity

[x1, y1][x2, y2] · · · [x2m , y2m ] = 0

(for short, A is D2m), then A is trivially Lie solvable of index m + 1 (for short, A is
Lsm+1). We will show that the converse holds for subalgebras of the upper triangular
matrix algebra Un(R), R any commutative ring, and n ≥ 1.

We will also consider two related questions, namely whether, for a field F , an Ls2
subalgebra of Mn(F ), for some n, with (F -)dimension larger than the maximum dimension

2 +
⌊
3n2

8

⌋
of a D2 subalgebra of Mn(F ), exists, and whether a D2 subalgebra of Un(F )

with (the mentioned) maximum dimension, other than the typical D2 subalgebras of
Un(F ) with maximum dimension, which were exhibited in [1] and refined in [3], exists.
Partial results with regard to these two questions are obtained.
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