Lie solvability in matrix algebras

Michal Ziembowski Technical Universitu of Warsaw *Email*: m.ziembowski@mini.pw.edu.pl

If an algebra \mathcal{A} satisfies the polynomial identity

 $[x_1, y_1][x_2, y_2] \cdots [x_{2^m}, y_{2^m}] = 0$

(for short, \mathcal{A} is D_{2^m}), then \mathcal{A} is trivially Lie solvable of index m + 1 (for short, \mathcal{A} is Ls_{m+1}). We will show that the converse holds for subalgebras of the upper triangular matrix algebra $U_n(R)$, R any commutative ring, and $n \geq 1$.

We will also consider two related questions, namely whether, for a field F, an Ls₂ subalgebra of $M_n(F)$, for some n, with (F-)dimension larger than the maximum dimension $2 + \lfloor \frac{3n^2}{8} \rfloor$ of a D₂ subalgebra of $M_n(F)$, exists, and whether a D₂ subalgebra of $U_n(F)$ with (the mentioned) maximum dimension, other than the typical D₂ subalgebras of $U_n(F)$ with maximum dimension, which were exhibited in [1] and refined in [3], exists. Partial results with regard to these two questions are obtained.

References

- M. Domokos, On the dimension of faithful modules over finite dimensional basic algebras, Linear Algebra Appl. 365 (2003), 155–157.
- 2. J. Szigeti, J. van den Berg, L. van Wyk, M. Ziembowski, The maximum dimension of a Lie nilpotent subalgebra of $M_n(F)$ of index m, to appear in Transactions of the AMS.
- 3. L. van Wyk and M. Ziembowski, Lie solvability and the identity $[x_1, y_1][x_2, y_2] \cdots [x_q, y_q] = 0$ in certain matrix algebras, Linear Algebra Appl. **533** (2017), 235–257.
- L. van Wyk and M. Ziembowski, *Lie solvability in matrix algebras*, Linear and Multilinear Algebra 67 (2019), 777–798.