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If an algebra A satisfies the polynomial identity

[x1, y1][x2, y2] · · · [x2m , y2m ] = 0

(for short, A is D2m), then A is trivially Lie solvable of index m + 1 (for short, A is
Lsm+1). We will show that the converse holds for subalgebras of the upper triangular
matrix algebra Un(R), R any commutative ring, and n ≥ 1.

We will also consider two related questions, namely whether, for a field F , an Ls2
subalgebra of Mn(F ), for some n, with (F -)dimension larger than the maximum dimension
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of a D2 subalgebra of Mn(F ), exists, and whether a D2 subalgebra of Un(F )

with (the mentioned) maximum dimension, other than the typical D2 subalgebras of
Un(F ) with maximum dimension, which were exhibited in [1] and refined in [3], exists.
Partial results with regard to these two questions are obtained.
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