Tilting modules over Auslander-Gorenstein algebras

Xiaojin Zhang

Nanjing University of Information Science and Technology

Email: xjzhang@nuist.edu.cn

For a finite dimensional algebra \(\Lambda \) and a non-negative integer \(n \), we characterize when the set \(\text{tilt}_n \Lambda \) of additive equivalence classes of tilting modules with projective dimension at most \(n \) has a minimal (or equivalently, minimum) element. This generalize results of Happel-Unger. Moreover, for an \(n \)-Gorenstein algebra \(\Lambda \) with \(n \geq 1 \), we construct a minimal element in \(\text{tilt}_n \Lambda \). As a result, we give equivalent conditions for a \(k \)-Gorenstein algebra to be Iwanaga-Gorenstein. Moreover, for an \(1 \)-Gorenstein algebra \(\Lambda \) and its factor algebra \(\Gamma = \Lambda/(e) \), we show that there is a bijection between \(\text{tilt}_1 \Lambda \) and the set \(\text{stilt} \Gamma \) of isomorphism classes of basic support \(\tau \)-tilting \(\Gamma \)-modules, where \(e \) is an idempotent such that \(e\Lambda \) is the additive generator of projective-injective \(\Lambda \)-modules. This is a joint work with Osamu Iyama.

REFERENCES