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Let C be a Krull–Schmidt category. In [2], a chain C = C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0 of
subcategories of C is called a total right rejective chain if the following conditions hold:

(a) Ci is a right rejective subcategory of C;
(b) the Jacobson radical of the factor category Ci−1/[Ci] is zero.
In this talk, we give various examples of total right rejective chains. It is known

that total right rejective chains are deeply related right-strongly quasi-hereditary algebras
which are a special class of quasi-hereditary algebras introduced by Ringel [3].

Proposition 1 ([4, Theorem 3.22]). Let A be an artin algebra. Then A is right-strongly
quasi-hereditary if and only if the category projA has a total right rejective chain

The following theorem is one of main results of this talk. One is a refinement of [1,
Proposition 1.6], and the other is a refinement of [1, Proposition 2.3] and [5, Proposition
3.1].

Theorem 2. Let A be an artin algebra. If A is a locally hereditary algebra or a Nakayama
algebra with heredity ideal, then the category projA admits a total right rejective chain. In
particular, the following statements hold.

(1) If A is a locally hereditary algebra, then A is right-strongly quasi-hereditary.
(2) Let A be a Nakayama algebra. Then A is a right-strongly quasi-hereditary algebra

if and only if there exists a heredity ideal of A.

Next, we study ∆-good module category F(∆) using rejective chains. In [6], it is shown
that if the category F(∆) over a quasi-hereditary algebra A has an additive generator M ,
then the endomorphism algebra EndA(M) is quasi-hereditary. Motivated by this result,
we give the following proposition.

Proposition 3. Let A be a quasi-hereditary algebra and F(∆) the ∆-good module cat-
egory. Assume that F(∆) has an additive generator M and multiplicity-free. Then the
category F(∆) admits a total right rejective chain. In particular, the endomorphism al-
gebra EndA(M) is a right-strongly quasi-hereditary algebra.
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