Constructions of rejective chains

Mayu Tsukamoto

Yamaguchi University

Email: tsukamot@yamaguchi-u.ac.jp

Let \mathcal{C} be a Krull–Schmidt category. In [2], a chain $\mathcal{C} = \mathcal{C}_0 \supset \mathcal{C}_1 \supset \cdots \supset \mathcal{C}_n = 0$ of subcategories of \mathcal{C} is called a *total right rejective chain* if the following conditions hold:

(a) C_i is a right rejective subcategory of C;

(b) the Jacobson radical of the factor category $C_{i-1}/[C_i]$ is zero.

In this talk, we give various examples of total right rejective chains. It is known that total right rejective chains are deeply related right-strongly quasi-hereditary algebras which are a special class of quasi-hereditary algebras introduced by Ringel [3].

Proposition 1 ([4, Theorem 3.22]). Let A be an artin algebra. Then A is right-strongly quasi-hereditary if and only if the category projA has a total right rejective chain

The following theorem is one of main results of this talk. One is a refinement of [1, Proposition 1.6], and the other is a refinement of [1, Proposition 2.3] and [5, Proposition 3.1].

Theorem 2. Let A be an artin algebra. If A is a locally hereditary algebra or a Nakayama algebra with heredity ideal, then the category proj A admits a total right rejective chain. In particular, the following statements hold.

- (1) If A is a locally hereditary algebra, then A is right-strongly quasi-hereditary.
- (2) Let A be a Nakayama algebra. Then A is a right-strongly quasi-hereditary algebra if and only if there exists a heredity ideal of A.

Next, we study Δ -good module category $\mathcal{F}(\Delta)$ using rejective chains. In [6], it is shown that if the category $\mathcal{F}(\Delta)$ over a quasi-hereditary algebra A has an additive generator M, then the endomorphism algebra $\operatorname{End}_A(M)$ is quasi-hereditary. Motivated by this result, we give the following proposition.

Proposition 3. Let A be a quasi-hereditary algebra and $\mathcal{F}(\Delta)$ the Δ -good module category. Assume that $\mathcal{F}(\Delta)$ has an additive generator M and multiplicity-free. Then the category $\mathcal{F}(\Delta)$ admits a total right rejective chain. In particular, the endomorphism algebra $\operatorname{End}_A(M)$ is a right-strongly quasi-hereditary algebra.

References

- W. D. Burgess, K. R. Fuller, On Quasihereditary Rings, Proc. Amer. Math. Soc. 106 (1989), no. 2, 321–328.
- O. Iyama, Finiteness of representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011– 1014.
- C. M. Ringel, *Iyama's finiteness theorem via strongly quasi-hereditary algebras*, J. Pure Appl. Algebra 214 (2010), no. 9, 1687–1692.
- 4. M. Tsukamoto, *Strongly quasi-hereditary algebras and rejective subcategories*, arXiv:1705.03279, to appear in Nagoya Math. J.
- 5. M. Uematsu, K. Yamagata, On serial quasi-hereditary rings, Hokkaido Math. J. 19(1) (1990), 165–174.
- C. C. Xi, Endomorphism algebras of F(Δ) over quasi-hereditary algebras, J. Algebra 175 (1995), no. 3, 966–978.

2010 Mathematics Subject Classification. Primary 16G10; Secondary 18A40.