A Poisson \(\mathbb{C} \)-algebra \(R \) appears in classical mechanical system and its quantized algebra appearing in quantum mechanical system is a \(\mathbb{C}[[\hbar]] \)-algebra \(Q = R[[\hbar]] \) with star product \(* \) such that for any \(a, b \in R \subseteq Q \),

\[
a * b = ab + B_1(a,b)\hbar + B_2(a,b)\hbar^2 + \ldots
\]

subject to

\[
\{a,b\} = \hbar^{-1}(a * b - b * a)|_{\hbar=0}, \quad \cdots \quad (**)\]

where \(B_i : R \times R \rightarrow R \) are bilinear products. The given Poisson algebra \(R \) is recovered from its quantized algebra \(Q \) by \(R = Q/\hbar Q \) with Poisson bracket (**) which is called its semiclassical limit. But it seems that the star product in \(Q \) is complicate and that \(Q \) is difficult to understand at an algebraic point of view since it is too big. For instance, if \(\lambda \) is a nonzero element of \(\mathbb{C} \) then \(\hbar - \lambda \) is a unit in \(Q \) and thus a so-called deformation of \(R \), \(Q/(\hbar - \lambda)Q \), is trivial. Hence it seems that we need an appropriate \(\mathbb{F} \)-subalgebra \(A \) of \(Q \) such that \(A \) contains all generators of \(Q \), \(\hbar \in A \) and \(A \) is understandable at an algebraic point of view, where \(\mathbb{F} \) is a subring of \(\mathbb{C}[[\hbar]] \).

Here we discuss how to find nontrivial deformations from quantized algebras and how similar quantized algebras are to their semiclassical limits. Results are illustrated by examples.

References

2010 Mathematics Subject Classification. 17B63, 16W20, 16S80.