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A Poisson C-algebra R appears in classical mechanical system and its quantized algebra
appearing in quantum mechanical system is a C[[~]]-algebra Q = R[[~]] with star product
∗ such that for any a, b ∈ R ⊆ Q,

a ∗ b = ab+B1(a, b)~ +B2(a, b)~2 + . . .

subject to
{a, b} = ~−1(a ∗ b− b ∗ a)|~=0, · · · (∗∗)

where Bi : R× R −→ R are bilinear products. The given Poisson algebra R is recovered
from its quantized algebra Q by R = Q/~Q with Poisson bracket (∗∗), which is called its
semiclassical limit. But it seems that the star product in Q is complicate and that Q is
difficult to understand at an algebraic point of view since it is too big. For instance, if λ
is a nonzero element of C then ~−λ is a unit in Q and thus a so-called deformation of R,
Q/(~− λ)Q, is trivial. Hence it seems that we need an appropriate F-subalgebra A of Q
such that A contains all generators of Q, ~ ∈ A and A is understandable at an algebraic
point of view, where F is a subring of C[[~]].

Here we discuss how to find nontrivial deformations from quantized algebras and how
similar quantized algebras are to their semiclassical limits. Results are illustrated by
examples.
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