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Recently, the notion of extriangulated category was introduced in [5] as a simultaneous
generalization of triangulated category and exact category. A typical example of extrian-
gulated categories is the cotorsion class of a cotorsion pair over a triangulated category.

Our first aim is to provide an analog of the following Gabriel-Quillen embedding theorem
for extriangulated categories. It shows that any skeletally small exact category C can be
embedded in the category LexC of left exact functors from C to the category Ab of abelian
groups. More precisely, the canonical inclusion R : LexC — Mod C admits a left adjoint
() and hence we have a localization sequence:

Ker Q ——— ModC L. LexC.

~e_ \~/
R

Moreover, the composed functor E¢ : C < ModC “ LexC , which is called the Gabriel-
Quillen embedding functor, is exact and fully faithful. We show a “finitely presented”
version of the theorem for some extriangulated categories with weak-kernels, especially,
there exists a Gabriel-Quillen type functor E¢ : C — lexC, where lexC denotes the category
of the finitely presented left exact functors from C to Ab. Using the functor Eg, we
provide necessary and sufficient conditions for an extriangulated category C to be exact
and abelian, respectively.

Our main result is an application for a cotorsion pair (U, V) in a triangulated category
T. In [4, 1], it was proved that there exists an abelian category H associated to the co-
torsion pair, called the heart. This result was shown for two extremal cases [2, 3], namely,
t-structures and 2-cluster tilting subcategories. Since the cotorsion class I/ has a natural
extriangulated structure, we have the Gabriel-Quillen type functor Fy : U — lextd. Our
result provides a good understanding for a construction of the heart, in particular, we
have an equivalence H ~ lexU{.
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