The center subalgebra of the quantized enveloping algebra of a simple Lie algebra revisited

Libin Li Yangzhou University, China, 225002 lbli@yzu.edu.cn

Let \mathfrak{g} be a finite dimensional simple complex Lie algebra and $U = U_q(\mathfrak{g})$ the quantized enveloping algebra (in the sense of Jantzen) with q being generic. In this paper, we show that the center $Z(U_q(\mathfrak{g}))$ of the quantum group $U_q(\mathfrak{g})$ is isomorphic to a monoid algebra, and that $Z(U_q(\mathfrak{g}))$ is a polynomial algebra if and only if \mathfrak{g} is of type $A_1, B_n, C_n, D_{2k+2}, E_7, E_8, F_4$ or G_2 . Moreover, when \mathfrak{g} is of type A_n , then $Z(U_q(\mathfrak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra described by *n*-sequences; when \mathfrak{g} is of type D_n with *n* odd, then $Z(U_q(\mathfrak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra in n + 1variables with one relation; when \mathfrak{g} is of type E_6 , then $Z(U_q(\mathfrak{g}))$ is isomorphic to a quotient algebra of a polynomial algebra in fourteen variables with eight relations;