The Auslander-Reiten conjecture for non-Gorenstein rings

Shinya Kumashiro
Chiba University
Email: axwa4903@chiba-u.jp

The purpose of this talk is to study the vanishing of cohomology. The Auslander-Reiten conjecture is one of the long-standing conjectures about the vanishing, that is, for a Noetherian ring \(R \) and a finitely generated \(R \)-module \(M \), \(\operatorname{Ext}^i_R(M, M \oplus R) = 0 \) for all \(i > 0 \) implies that \(M \) is a projective \(R \)-module. In this talk, we focus on the Auslander-Reiten conjecture for the case where \(R \) is commutative. In that case, the following result is fundamental.

Fact 1. Suppose that \(R \) is a commutative Noetherian local ring. Let \(Q \) be an ideal of \(R \) generated by a regular sequence on \(R \). Then the Auslander-Reiten conjecture holds for \(R \) if and only if it holds for \(R/Q \).

Motivated by this result, we explore the Auslander-Reiten conjecture for \(R/Q^\ell \) in connection with that for \(R \), where \(\ell \) is a positive integer. Let us note that \(Q^\ell \) do not preserve some homological properties, for example, Gorensteinness. Therefore \(R/Q^\ell \) gives a new class of rings which satisfy the Auslander-Reiten conjecture. As a result of this talk, we have an affirmative answer to this question for the case where \(R \) is Gorenstein and \(\ell \) is bounded above by the number of minimal generators of \(Q \). Furthermore, we have two applications of the result. To state the applications, let us recall some notations.

Definition 2.

1. **(determinantal ring)** Let \(s \leq t \) be positive integers and \(A[X] = A[X_{ij}]_{1 \leq i \leq s, 1 \leq j \leq t} \) a polynomial ring over a commutative ring \(A \). Let \(\mathbb{I}_s(X) \) denote the ideal of \(A[X] \) generated by the maximal minors of the matrix \((X_{ij}) \). Then \(A[X]/\mathbb{I}_s(X) \) is called a determinantal ring over \(A \).

2. **(Ulrich ideal)** Let \((R, \mathfrak{m})\) be a Cohen-Macaulay local ring and \(I \) an \(\mathfrak{m} \)-primary ideal. Then \(I \) is an Ulrich ideal if
 - (a) \(I \) is not a parameter ideal, but \(I^2 = qI \) for some parameter ideal \(q \).
 - (b) \(I/I^2 \) is a free \(R/I \)-module.

With these notations, we have the following, which is a goal of this talk.

Theorem 3. The following assertions are true.

1. Suppose \(A \) is either a complete intersection or a Gorenstein normal domain. Then the Auslander-Reiten conjecture holds for the determinantal ring \(A[X]/\mathbb{I}_s(X) \) if \(2s \leq t + 1 \).
2. Let \(R \) be a Cohen-Macaulay local ring. If there is an Ulrich ideal such that \(R/I \) is a complete intersection, then the Auslander-Reiten conjecture holds for \(R \).

References

2010 *Mathematics Subject Classification*. 13C40, 13D07, 13H10.