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Let k be an algebraically closed field of chark = 0. A graded k-algebra A(q, ) =
k{z,y)/(x*y — Bya® — azyr, xy? — By*r — ayzy),degx = m,degy = n € NT with
parameters «, 8 € k is called a graded down-up algebra. It is known that a graded down-
up algebra A = («, ) is a noetherian AS-regular algebra of dimension 3 if and only if 8 # 0
([4]). By the special case of [5, Theorem 4.14], if A = A(«, [3) is a graded down-up algebra
with 8 # 0, then the Beilinson algebra VA of A is extremely Fano of global dimension
2, and there exists an equivalence of triangulated categories DP(tails A) = D®(mod V A),
where tails A is the noncommutative projective scheme of A in the sense of [1].

The aim of our talk is to investigate the Hochschild cohomology groups HH(VA) of
VA of a graded down-up algebra A = A(q, 5) with 5 # 0. If degz = degy = 1, then a
description of the Hochschild cohomology group HH'(V A) of VA has been obtained using
a geometric technique ([2, Table 2]). In this talk, for degz = 1,degy = n > 2, we give
the dimension formula of HH'(V A) for each i > 0. In this case, the Beilinson algebra VA
of A is given by the following quiver () with relations f; =0 (1 <i <n), g =0:
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In particular, it turns out from our dimension formula that the group structure of HH'(V A)
depends on the values of a® +43 and 6, := (10) (%4)" (§) ([3, Theorem 1.4]). Using the
fact that Hochschild cohomology is invariant under derived equivalence, our result im-
plies the following: Let A = A(«, ) and A" = A(d/, ') be graded down-up algebras with
degz = 1,degy =n > 1, where B3 # 0,8 # 0. If 6, := (10) (%4§)"(3) =0 and &, :=
(10) (g; [l))n (§) # 0, then DP(tails A) 2 DP(tails A’) ([3, Corollary 1.5]).
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