Hochschild cohomology of Beilinson algebras of graded down-up algebras

Ayako Itaba and Kenta Ueyama Tokyo University of Science and Hirosaki University

Email: itaba@rs.tus.ac.jp and k-ueyama@hirosaki-u.ac.jp

Let k be an algebraically closed field of char k = 0. A graded k-algebra $A(\alpha, \beta) := k\langle x, y \rangle / (x^2y - \beta yx^2 - \alpha xyx), xy^2 - \beta y^2x - \alpha yxy)$, deg x = m, deg $y = n \in \mathbb{N}^+$ with parameters $\alpha, \beta \in k$ is called a graded down-up algebra. It is known that a graded down-up algebra $A = (\alpha, \beta)$ is a noetherian AS-regular algebra of dimension 3 if and only if $\beta \neq 0$ ([4]). By the special case of [5, Theorem 4.14], if $A = A(\alpha, \beta)$ is a graded down-up algebra with $\beta \neq 0$, then the Beilinson algebra ∇A of A is extremely Fano of global dimension 2, and there exists an equivalence of triangulated categories $\mathsf{D}^{\mathsf{b}}(\mathsf{tails} A) \cong \mathsf{D}^{\mathsf{b}}(\mathsf{mod} \nabla A)$, where $\mathsf{tails} A$ is the noncommutative projective scheme of A in the sense of [1].

The aim of our talk is to investigate the Hochschild cohomology groups $\operatorname{HH}^{i}(\nabla A)$ of ∇A of a graded down-up algebra $A = A(\alpha, \beta)$ with $\beta \neq 0$. If deg $x = \deg y = 1$, then a description of the Hochschild cohomology group $\operatorname{HH}^{i}(\nabla A)$ of ∇A has been obtained using a geometric technique ([2, Table 2]). In this talk, for deg x = 1, deg $y = n \geq 2$, we give the dimension formula of $\operatorname{HH}^{i}(\nabla A)$ for each $i \geq 0$. In this case, the Beilinson algebra ∇A of A is given by the following quiver Q with relations $f_{i} = 0$ ($1 \leq i \leq n$), g = 0:

$$Q := 1 \xrightarrow{x_1} 2 \xrightarrow{x_2} \cdots \xrightarrow{x_{n-1}} n \xrightarrow{x_n} n+1 \xrightarrow{x_{n+1}} n+2 \xrightarrow{x_{n+2}} \cdots \xrightarrow{x_{2n}} 2n+1 \xrightarrow{x_{2n+1}} 2n+2 ,$$

$$y_1 \qquad y_2 \qquad y_n \qquad y_{n+1} \qquad y_{n+2} \qquad f_i := x_i x_{i+1} y_{i+2} - \beta y_i x_{i+n} x_{i+n+1} - \alpha x_i y_{i+1} x_{i+n+1},$$

 $g := x_1 y_2 y_{n+2} - \beta y_1 y_{n+1} x_{2n+1} - \alpha y_1 x_{n+1} y_{n+2}.$ In particular, it turns out from our dimension formula that the group structure of $\operatorname{HH}^i(\nabla A)$

depends on the values of $\alpha^2 + 4\beta$ and $\delta_n := (10) \begin{pmatrix} \alpha & 1 \\ \beta & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} ([3, \text{Theorem 1.4}])$. Using the fact that Hochschild cohomology is invariant under derived equivalence, our result implies the following: Let $A = A(\alpha, \beta)$ and $A' = A(\alpha', \beta')$ be graded down-up algebras with deg x = 1, deg $y = n \ge 1$, where $\beta \ne 0, \beta' \ne 0$. If $\delta_n := (10) \begin{pmatrix} \alpha & 1 \\ \beta & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$ and $\delta'_n := (10) \begin{pmatrix} \alpha' & 1 \\ \beta' & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ne 0$, then $\mathsf{D}^{\mathsf{b}}(\mathsf{tails} A) \ncong \mathsf{D}^{\mathsf{b}}(\mathsf{tails} A')$ ([3, Corollary 1.5]).

References

- 1. M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228-287.
- P. Belmans, Hochschild cohomology of noncommutative planes and quadrics, J. Noncommut. Geom., in press (arXiv:1705.06098).
- A. Itaba and K. Ueyama, Hochschild cohomology related to graded down-up algebras with weights (1, n), (2019) (arXiv:1904.00677).
- E. Kirkman, I. Musson, and D. Passman, Noetherian down-up algebras, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3161–3167.
- H. Minamoto and I. Mori, The structure of AS-Gorenstein algebras, Adv. Math. 226 (2011), no. 5, 4061–4095.

2010 Mathematics Subject Classification. 16E40, 16S38, 16E05, 18E30.