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Let k be an algebraically closed field of char k = 0. A graded k-algebra A(α, β) :=
k⟨x, y⟩/(x2y − βyx2 − αxyx, xy2 − βy2x − αyxy), deg x = m, deg y = n ∈ N+ with
parameters α, β ∈ k is called a graded down-up algebra. It is known that a graded down-
up algebra A = (α, β) is a noetherian AS-regular algebra of dimension 3 if and only if β ̸= 0
([4]). By the special case of [5, Theorem 4.14], if A = A(α, β) is a graded down-up algebra
with β ̸= 0, then the Beilinson algebra ∇A of A is extremely Fano of global dimension
2, and there exists an equivalence of triangulated categories Db(tailsA) ∼= Db(mod∇A),
where tailsA is the noncommutative projective scheme of A in the sense of [1].

The aim of our talk is to investigate the Hochschild cohomology groups HHi(∇A) of
∇A of a graded down-up algebra A = A(α, β) with β ̸= 0. If deg x = deg y = 1, then a
description of the Hochschild cohomology group HHi(∇A) of ∇A has been obtained using
a geometric technique ([2, Table 2]). In this talk, for deg x = 1, deg y = n ≥ 2, we give
the dimension formula of HHi(∇A) for each i ≥ 0. In this case, the Beilinson algebra ∇A
of A is given by the following quiver Q with relations fi = 0 (1 ≤ i ≤ n), g = 0:

Q := 1
x1 //

y1

552
x2 //

y2

55· · ·
xn−1 // n

xn //

yn

66n+ 1
xn+1 //

yn+1

55n+ 2
xn+2 //

yn+2

55· · ·
x2n // 2n+ 1

x2n+1 // 2n+ 2 ,

fi := xixi+1yi+2 − βyixi+nxi+n+1 − αxiyi+1xi+n+1,

g := x1y2yn+2 − βy1yn+1x2n+1 − αy1xn+1yn+2.

In particular, it turns out from our dimension formula that the group structure of HHi(∇A)
depends on the values of α2+4β and δn := ( 1 0 )

(
α 1
β 0

)n
( 1
0 ) ([3, Theorem 1.4]). Using the

fact that Hochschild cohomology is invariant under derived equivalence, our result im-
plies the following: Let A = A(α, β) and A′ = A(α′, β′) be graded down-up algebras with
deg x = 1, deg y = n ≥ 1, where β ̸= 0, β′ ̸= 0. If δn := ( 1 0 )

(
α 1
β 0

)n
( 1
0 ) = 0 and δ′n :=

( 1 0 )
(
α′ 1
β′ 0

)n
( 1
0 ) ̸= 0, then Db(tailsA) ≇ Db(tailsA′) ([3, Corollary 1.5]).
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