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Let k be an algebraically closed field of characteristic zero. Let G be a small subgroup of
GL(n, k), and let S = k[x1, . . . , xn] be the polynomial algebra. Then G acts on S naturally.
There is a natural isomorphism of algebras S ∗ G ∼=EndSG(S), where S ∗ G is the skew
group algebra, and SG is the fixed subalgebra of S. This result is usually called Auslander
Theorem (cf. [1, 2]). Auslander Theorem was generalized to noncommutative settings (cf.
[3, 4]). In this talk, I will report some progresses in noncommutative Auslander Theorem,
and their applications to noncommutative McKay correspondence (cf. [9, 5, 6]) and
noncommutative resolutions for singularities (cf. [8, 10]). Some progress on singularities
of noncommutative quadric hypersurfaces are also included in this talk (cf. [11, 7]).
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