Unique Factorization property of non-UFDs

Gyu Whan Chang Incheon National University *Email*: whan@inu.ac.kr

A unique factorization domain (UFD) is an integral domain in which each nonzero nonunit can be written uniquely as a finite product of irreducible elements, and in this case, each irreducible element is a prime element. Let D be an integral domain and t be the so-called t-operation on D. As in [1], D is called a *weakly factorial domain* (WFD) if each nonzero nonunit of D can be written as a finite product of primary elements. Two primary elements a, b of D will be said to be *distinct* if $\sqrt{aD} \neq \sqrt{bD}$. Let D be a WFD, and note that if

$$x = x_1 \cdots x_n = a_1 \cdots a_m$$

are two finite products of distinct primary elements of D, then n = m and $x_i D = a_i D$ for i = 1, ..., n by reordering if necessary. Hence, each nonzero nonunit of a WFD can be written uniquely as a finite product of distinct primary elements.

Following [5], we say that a nonzero nonunit $x \in D$ is homogeneous if x is contained in a unique maximal t-ideal of D. Then, in this talk, we will say that D is a homogeneous factorization domain (HoFD) if each nonzero nonunit of D can be written as a finite product of pairwise t-comaximal homogeneous elements. The notion of HoFDs was first introduced in [2], where the authors called an HoFD a t-pure domain. Clearly, primary elements are homogeneous. Thus, the notion of HoFDs is a natural generalization of WFDs, and we have the following implications:

UFD \Rightarrow Weakly factorial GCD-domain \Rightarrow WFD \Rightarrow HoFD.

In this talk, we first show that the expression of an element of an HoFD is unique as in the case of WFDs. Then, among other things, we show that (1) a PvMD D is an HoFD if and only if D[X], the polynomial ring over D, is an HoFD and (2) D is a weakly Matlis GCD-domain if and only if D[X] is an HoFD with t-Spec(D[X]) treed. We also study the HoFD property of A + XB[X] constructions, pullbacks, and semigroup rings. This talk is based on [3, 4].

References

- D.D. Anderson and L.A. Mahaney, On primary factorizations, J. Pure Appl. Algebra 54 (1988), 41-154.
- [2] D.D. Anderson, J.L. Mott, and M. Zafrullah, Unique factorization in non-atomic integral domains, Bollettino U.M.I. 8 2-B (1999), 341-352.
- [3] G.W. Chang, Unique factorization property of non-unique factorization domains, submitted for publication.
- [4] G.W. Chang and D.Y. Oh, Semigroup rings as weakly factorial domains, II, Internat. J. Algebra Comput. 29 (2019), 407-418.
- [5] T. Dumitrescu and M. Zafrullah, Characterizing domains of finite *-character, J. Pure Appl. Algebra 214 (2010), 2087-2091.