g-polytopes of Brauer graph algebras

Toshitaka Aoki

Nagoya University

Email: m15001d@math.nagoya-u.ac.jp

Inspired by a work of Hille [2], Asashiba-Mizuno-Nakashima [1] studied simplicial complexes of two-term tilting complexes over finite dimensional symmetric algebras A. For $0 \leq j \leq n-1$, the set of *j*-dimensional faces consists of the set of *g*-vectors $\{g^{T_1}, \ldots, g^{T_{j+1}}\}$ for basic two-term pretilting complexes $T = \bigoplus_{i=1}^{j+1} T_i$ having j + 1 indecomposable direct summands, where *n* is the number of simple modules of *A*. The *g*-polytope $\Delta(A)$ of *A* is given by (n-1)-dimensional faces

$$\Delta(A) := \bigcup_{T \in 2\text{-tilt}A} C_{\leq 1}(T) \subseteq \mathbb{R}^n,$$

where $C_{\leq 1}(T)$ is the convex hull of n+1 vectors $0, g^{T_1}, \ldots, g^{T_n}$ for a basic two-term tilting complex $T = \bigoplus_{i=1}^n T_i$. Note that the *g*-polytope can be regarded as a truncated version of *g*-vector cones since we have $C_{\leq 1}(T) = \{\sum_{i=1}^n a_i g^{T_i} \mid 0 \leq a_i \leq 1 \text{ for all } i = 1 \ldots, n\}.$

Due to the result of [1], the convexity and symmetry of g-polytopes are quite interesting in tilting mutation theory. One of their aims is to introduce the g-polytope as a new derived invariant of Brauer tree algebras. Note that Brauer tree algebras are τ -tiltingfinite symmetric algebras, namely, having only finitely many isomorphism classes of basic two-term tilting complexes.

Theorem 1. [2] Let G be a Brauer tree and A_G the associated Brauer tree algebra. Then $\Delta(A_G)$ is convex and satisfies $\Delta(A_G) = -\Delta(A_G)$. Therefore, if two Brauer tree algebras A_G and $A_{G'}$ are derived equivalent, then we have $\Delta(A_G) \cong \Delta(A_{G'})$.

An aim of this talk is to give a generalization for non- τ -tilting-finite symmetric algebras. In this case, we mainly study the closure $\overline{\Delta}(A)$ rather than $\Delta(A)$ itself. Finally, we conclude that the closure of g-polytopes of Brauer graph algebras is invariant under iterated mutation.

Proposition 2. Let A be a symmetric algebra. If any algebra B obtained by iterated mutation from A satisfies $\overline{\Delta}(B) = -\overline{\Delta}(B)$, then we have $\overline{\Delta}(A) \cong \overline{\Delta}(B)$.

Theorem 3. Let G be a Brauer graph and A_G the associated Brauer graph algebra. Then $\overline{\Delta}(A_G)$ is convex and satisfies $\overline{\Delta}(A_G) = -\overline{\Delta}(A_G)$. Therefore, if two Brauer graph algebras A_G and $A_{G'}$ are obtained by iterated mutation each other, then we have $\overline{\Delta}(A_G) \cong \overline{\Delta}(A_{G'})$.

Furthermore, we determine all integral lattice points of $\overline{\Delta}(A_G)$. We use a geometric model of a classification of two-term tilting complexes over Brauer graph algebras established by Adachi-Aihara-Chan.

References

- H. Asashiba, Y. Mizuno, and K. Nakashima, Simplicial complexes and tilting theory for Brauer tree algebras, ArXiv:1902.08774v1 (2019).
- L. Hille, Tilting modules over the path algebra of type A, polytopes, and Catalan numbers, Amer. Math. Soc., Providence, RI, 652 (2015), 91–101.